

IANIPAL INSTITUTE OF TECHNOLOGY

SECOND SEMESTER M.TECH. (CONTROL SYSTEMS) **END SEMESTER EXAMINATIONS, APRIL/MAY 2017**

SUBJECT: ROBUST AND H INFINITY CONTROL [ICE 5249]

Time: 3 Hours

MAX. MARKS: 50

2

5

2

2

Instructions to Candidates:

✤ Answer ALL the questions.

of Manipal University

- ✤ Missing data may be suitably assumed.
- Find the 2 norm of the function 1A.

$$G(s) = \frac{1}{100s + 4}$$

Explain (i) Sensitivity (ii) Complementary sensitivity (iii) Asymptotic tracking theorem. **1B.** 3

1C. For a double integrator plant P(s) = $\frac{1}{s^2}$ and controller C(s) = $\frac{3s+1}{s+3}$ as shown in block diagram Fig Q1C. Find the various transfer functions and determine the internal stability of

the system.

Fig. Q1C

Obtain the state space model of the system $G(s) = \frac{1}{s^2 + s + 1}$ and calculate $||G||_2$ 2A.

Consider the plant $P(s) = \frac{(s-3)(s+5)}{(s-10)(s+7)}$ for any controller C(s) (i) If s_0 is a zero of P in the 2B. 3 RHP then prove that $T(s_0) = 0$ and $S(s_0) = 1$. (ii) If s_1 is a pole of P in the RHP then prove that $T(s_1) = 1$ and $S(s_1) = 0$.

2C. Given plant
$$G(s) = \frac{1}{(s-1)(s-2)}$$
 Prove Bezout Identity 5

Indicate which of the plant can be stabilized with stable compensator **3A**.

(i)
$$P(s) = \frac{s(s-4)}{(s+1)(s-1)(s-2)}$$
 (ii) $P(s) = \frac{(s-1)}{s^2 + 8s + 16}$
blain the basic procedure of loop shaping technique **3**

3B. Explain the basic procedure of loop shaping technique

3C. Find the singular va

lue decomposition of matrix
$$A = \begin{bmatrix} 1 & 1 \\ 2 & 0 \end{bmatrix}$$

where factorizations of $C(s) = \frac{(s-4)(s-8)}{2}$

Find the inner and outer factorizations of $G(s) = \frac{(s-1)(s-1)}{(s+3)(s+5)}$ 4A.

In a position control system shown in fig Q4B 'a' ranges [3 5], 'T' ranges [0.05 0.25] and **3 4B.** 'K' ranges [2 3]. Using Kharitonov theorem determine the stability of the system.

fig Q4B

Determine the minimum model matching error for the plant $P(s) = \frac{s-1}{(s+1)(s-0.6)}$ and given 5 **4C**.

$$W_2 = \frac{s+0.2}{s+2}$$

5A. Find the spectral factorization of
$$G(s) = \frac{5(9-s^2)}{4(s-s^2)^2}$$

- Find the infinity norm of $G(s) = \begin{bmatrix} \frac{3}{s+12} \\ \frac{4}{s+2} \end{bmatrix}$ **5B**.
- 5C. Given plant P and weighting functions W_1 and W_2 , enumerate the steps for solving this 5 modified performance problem.

3