Reg. No.					
					l

II SEMESTER M.TECH. (COMPUTER AIDED ANALYSIS AND DESIGN) END SEMESTER EXAMINATIONS, APRIL/MAY 2017

SUBJECT: LUBRICATION OF BEARINGS [MME 5201] REVISED CREDIT SYSTEM

Time: 3 Hours MAX. MARKS: 50

Instructions to Candidates:

❖ Answer **ALL** the questions.

Missing data may be suitably assumed.

1A. 1B.	Explain the effect of pressure and temperature on the viscosity of a lubricating oil. With a neat sketch explain Viscosity Index. From first principles derive the continuity equation for a fluid with density	03
1C.	 ρ and flowing with velocities u, v, and w along the x, y and z axes respectively. Define Regime indicator, how it is used to classify the various regimes of labeliant. 	04
	lubrication.	03
2A. 2B.	Describe a numerical method for solution of finite journal bearings. What is hydrodynamic instability? Explain with sketches the methods by which the instability can be controlled and minimized.	04 04
2C.	With a neat sketch explain the 04 different regimes of elastohydrodynamic lubrication.	02
3A. 3B. 3C.	Discuss the modern methods of solid lubricant deposition Write a note on rolling bearing failures. Discuss the constant pressure system and constant flow system of Hydrostatic lubrication with neat sketches.	03 03 04
4A. 4B. 4C.	Discuss the long and short bearing solutions for the Reynolds equation. Write a note on ISO standards for rolling element bearings. What are the forces acting on an element within a moving fluid. Derive an	04 03
	expression for element acceleration.	03
5A. 5B.	With a neat sketch explain the mechanism of lubrication in lamellar solids. Write a note on Thermal, Inertia and Turbulence effects in fluid film	04
5C.	bearings. Discuss any one type of special bearing.	03 03

MME 5201 Page 1 of 1