Question Paper

MANIPAL UNIVERSITY

SCHOOL OF INFORMATION SCIENCES (SOIS) FIRST SEMESTER MASTER OF ENGINEERING - ME (BIG DATA AND DATA ANALYTICS) DEGREE EXAMINATION- APRIL 2017 Friday, 28,2017 Time : 10:00AM- 1:00PM

DevOps for Big Data Systems [BDA 615.1]

Marks: 100

Duration: 180 mins.

Answer all the questions.

- Compare the following three data collection (10) methods:
 (a) Senser based methods
 - (a) Sensor-based methods
 - (b) log-file based methods
 - (c) Web-crawler based methods
- Bring out four important differences between a ⁽¹⁰⁾ traditional SQL DBMS and a column-oriented data store such as Google's BigTable.
- ³⁾ In the context of the consistency model ⁽¹⁰⁾ supported by GFS, state the
 - (a) guarantees that GFS offers.
 - (b) implications for the GFS applications.
- ⁴⁾ Describe how atomic record appending works ⁽¹⁰⁾ in GFS. What are the key technical challenges in achieving this model.
- ⁵⁾ Provide the formal definition and an example ⁽¹⁰⁾ for each of the following operators found in the algebra of Grammar of Graphics:
 - (a) Nest operator
 - (b) Blend operator
- 6) Show with a good example, how the Nest (10) algebraic operator may be used to represent the **Nested dot plot**.
- ⁷⁾ Show the contexts in which you would choose ⁽¹⁰⁾

- (a) Stacked graphs
- (b) Small-multiples
- (c) Horizon graphs

Give an example for each to justify your response.

- ⁸⁾ With suitable examples, state at least two ⁽¹⁰⁾ techniques for visualizing network of relationships. What are the technical challenges in each of these techniques?
- ⁹⁾ With an example for each, state the rationale ⁽¹⁰⁾ behind the following rules for producing better visualization:
 - (a) Use colors effectively
 - (b) Avoid Chartjunk
 - (c) Message trumps beauty
- ¹⁰⁾ Bring out four important differences between ⁽¹⁰⁾ the MapReduce programming model, and the Graph Processing (programming) model.