4/28/2017 Question Paper

28-Apr-2017 11:14:46 TECHNICAL SUPPORT

Support | Change Password | Logout

Basic Masters

Question Paper

Device & Dockets

Evaluation

Evaluation Reports

Reports Utilities

Back

Select Exam Event SOIS End Semester April 2017

Refresh

Show answer keys for MCQ.

MANIPAL UNIVERSITY

SCHOOL OF INFORMATION SCIENCES (SOIS)
SECOND SEMESTER MASTER OF ENGINEERING- ME(MEDICAL SOFTWARE)
DEGREE EXAMINATION- APRIL/ MAY2017

Friday, 28, 2017 Time: 10:00 AM - 1:00 PM

Bio Medical Signal Processing [MMS 616.1]

Marks: 100 Duration: 180 mins.

	${f A}$.,
Answer all the questions.		
1)	With neat Diagram, explain anatomy of the brain	(10)
2)	Explain physiology of the heart	(10)
3)	With neat diagram explain ECG lead system	(10)
4)	What is data reduction technique? Explain any one Lossless data reduction algorithm.	(10)
5)	How signal compression ratio will be 2:1 in turning point algorithm, explain?	(10)
6)	Find the DFT of the sequence $x(n) = [1, 1, 1, 0, 0, 1, 1, 1]$ using DIT-FFT algorithm.	(10)
7)	Explain DFT-FFT using Decimation in Frequency technique	(10)
8)	Realize the following system functions using Direct form-I, Direct form-II and CSOS / PSOS	(10)
	H(z) = [(z2 + 0.5z + 1)(z + 0.6)] / [(z2 + 0.6z + 0.2)(z - 0.8)]	
9)	Design an ideal FIR low pass filter with a cutoff frequency of $\pi/2$ radians, using Hamming window. Assume 25 tap coefficients	(10)
10)	Design and realize a Butterworth / Schebychev lowpass analog filter whose Passband magnitude is to be constant within 1 dB for frequencies below 0.2π rad/sec and stopband attenuation is to be greater than 15 dB for frequencies above 0.3π rad/sec.	(10)

4/28/2017 Question Paper

ep C OUC All rights reserved.

Copyright @ 2017 Littlemore Innovation Labs Pvt Ltd. IP: 52.66.163.73 epCloud 1.5