Question Paper

MANIPAL UNIVERSITY

SCHOOL OF INFORMATION SCIENCES (SOIS) FIRST SEMESTER MASTER OF ENGINEERING- ME(VLSI DESIGN) DEGREE EXAMINATION- APRIL 2017 Thursday, 20,2017

Time :10:00AM- 1:00PM

Data Structures [EDA 609]

Marks: 100 Duration: 180 mins.

Answer all the questions.

- Write the data structures required to implement single linked list. Write functions to add an element at the tail position and count the number of elements in the list. (4+4+2)
- Write the data structures required to implement array based stack. Write functions to check whether stack is full, stack is empty and delete element from stack.

 (3+2+2+3)
- Give the data structure required for array based queue. Write functions to create a queue, add and delete element from circular queue. (2+2+3+3)
- With required data structure write function to add element into Binary Search Tree. Write a function for In-Order traversal of a binary search tree.

 (3+5+2)
- Implement insertion sort. Give an example. (10)
 Discuss its time complexity. (5+3+2)
- Provide different techniques for representing (10) graph. Describe Prim's algorithm with example.

(4+4+2)

7)	What is hashing? With required data struwrite function to delete an element from table using separate chain hashing (open hashing). (2+3+5)	Hash	(10)
8)	Considering two linked list A and B. Write function to create linked list $C = A$ inters B.		(10)
	(3+7)		
9)	Write a program to find maximum and minimum element in a linked list 5)	(5 +	(10)
10)	Write functions to		(10)
	A. Extract element from Maximum	(5)	
	heap	(5)	
	B. Insert element into Maximum	(=)	
	heap	(5)	