

ANIPAL INSTITUTE OF TECHNOLOGY

VI SEMESTER B.TECH. (AUTOMOBILE ENGINEERING) MAKEUP EXAMINATIONS, JUNE 2017

SUBJECT: FINITE ELEMENT METHOD-ELECTIVE III (AAE-4028)

REVISED CREDIT SYSTEM

(20/06/2017)

Time: 3 Hours

MAX. MARKS: 50

Instructions to Candidates:

- ✤ Answer ALL the questions.
- Missing data may be suitable assumed.
- **1A.** For the spring bar assemblage shown in Figure 1. Determine the nodal **(05)** displacements, the forces in each element.

1B. For the truss shown in Figure 2, solve for the horizontal and vertical **(05)** components of displacement at node 1. Also determine the stress in element 1. Let $A = 1 \text{ in}^2$, $E = 10 \times 10^6 \text{ psi}$, and L = 100 in.

2A. For bar element shown in Figure 3, determine the nodal displacements and the (05) forces in each element. Use the direct stiffness method for this problems.

2B. The plane truss shown in Figure 4 is subjected to a downward vertical load at **(05)** node 2. Determine via the direct stiffness method the deflection of node 2 in the global coordinate system specified and the axial stress in each element. For both elements, A = 0.5 in.², $E = 30 \times 10^6$ psi.

3A. For the plane trusses shown in Figure 5, determine the horizontal and vertical (07) displacements of node 1 and the stresses in each element. All elements have E = 210 GPa and $A = 4X10^{-4}$ m².

a. Assemble the global stiffness matrix.

b. Compute the nodal displacements in the global coordinate system for the loads shown.

3B. Compute the axial stress in each element for the figure 5. (03)

4A. For the beams shown in Figure 6, determine the displacement and slope. (07)

Equivalent Force body diagram for Figure 6

- **4B.** For the beams shown in Figure 6, find the reaction of each elements (03)
- **5A.** Evaluate the stiffness matrix for the plane stress element shown in Figure 7. (05) The coordinates are given in units of millimeter. E = 82 GPa and v = 0.3.

5B. For the plane strain elements shown in Figure 7, the nodal displacements are **(05)** given as

 $u_1 = 0.005 \text{ mm}, v_1 = 0.002 \text{ mm}, u_2 = 0.0 \text{ mm}, v_2 = 0.0 \text{ mm}, u_3 = 0.005 \text{ mm}, v_3 = 0.0 \text{ mm}.$

Determine the element stresses σ_x , σ_y , τ_{xy} and σ_1 , σ_2 , and the principal angle θ_p .