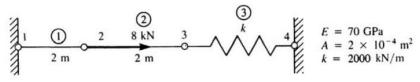


ANIPAL INSTITUTE OF TECHNOLOGY

VI SEMESTER B.TECH. (AUTOMOBILE ENGINEERING) END SEMESTER EXAMINATIONS, APRIL/MAY 2017

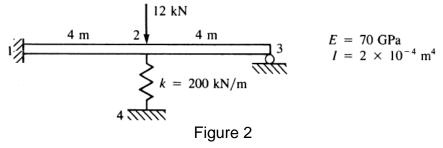
SUBJECT: FINITE ELEMENT METHOD-ELECTIVE III (AAE-4028)

REVISED CREDIT SYSTEM

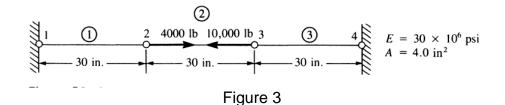

(27/04/2017)

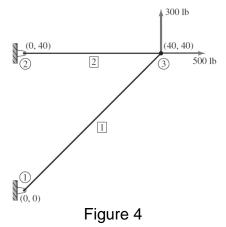
Time: 3 Hours

MAX. MARKS: 50

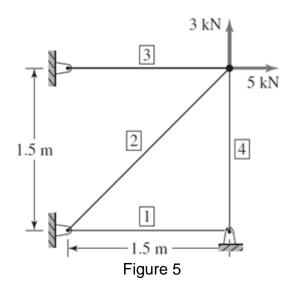

Instructions to Candidates:

- ✤ Answer ALL the questions.
- Missing data may be suitable assumed.
- **1A.** For the spring bar assemblage shown in Figure 1. Determine the nodal **(05)** displacements, the forces in each element.



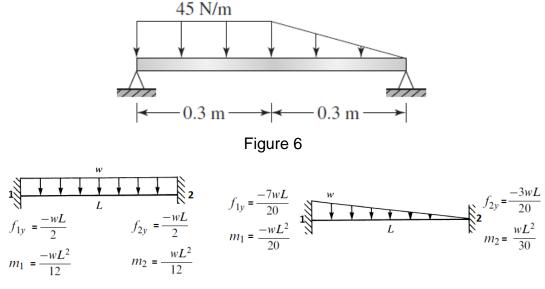

1B. For the beam shown in Figure 2. Determine the nodal displacements and **(05)** slopes.

2A. For bar element shown in Figure 3, determine the nodal displacements and the (05) forces in each element. Use the direct stiffness method for these problems.

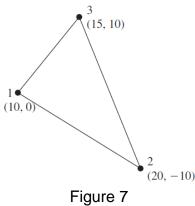

2B. The two-element truss in Figure 4 is subjected to external loading as shown. **(05)** Determine the displacement components of node 3, the reaction force components at nodes 1 and 2, and the element displacements. The elements have modulus of elasticity $E_1 = E_2 = 10 \times 10^6$ lb/in.² and cross-sectional areas $A_1 = A_2 = 1.5$ in.²

3A. The plane truss shown in Figure 5 is composed of members having a square (07) $15 \text{ mm} \times 15 \text{ mm}$ cross section and modulus of elasticity E = 69 GPa.

a. Assemble the global stiffness matrix.


b. Compute the nodal displacements in the global coordinate system for the loads shown.

3B. Compute the axial stress in each element for the figure 5.


(03)

4A. For the beams shown in Figure 6, determine the displacement and slope.

Equivalent Force body diagram for Figure 6

- **4B.** For the beams shown in Figure 6, find the reaction of each elements. (04)
- **5A.** Evaluate the stiffness matrix for the plane stress element shown in Figure 7. (05) The coordinates are given in units of millimeter. E = 82 GPa and v = 0.3.

5B. For the plane strain elements shown in Figure 7, the nodal displacements are given as, $u_1 = 0.005$ mm, $v_1 = 0.002$ mm, $u_2 = 0.0$ mm, $v_2 = 0.0$ mm, $u_3 = 0.005$ mm, $v_3 = 0.0$ mm. Determine the element stresses σ_x , σ_y , τ_{xy} and σ_1 , σ_2 , and the principal angle θ_p .