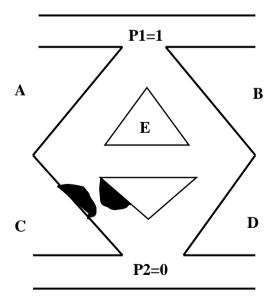
Reg. No.						
1105.110.					l	



VI SEMESTER B.Tech. (BME) DEGREE END SEM EXAMINATIONS APRIL/ MAY 2017 SUBJECT: BIOFLUIDS & BIOMECHANICS (BME 320) (REVISED CREDIT SYSTEM) Saturday, 29th April 2017, 2 to 5 pm

TIME: 3 HOURS MAX. MARKS: 100

Instructions to Candidates:

- 1. Answer any FIVE full questions.
- 2. Draw labeled diagram wherever necessary.
 - 1A Illustrate the various spatial parameters of a human gait cycle. 6
 - **1B** Compare laminar blood flow and turbulent blood flow.
 - 1C Differentiate parallel muscle fiber arrangement from penniform muscle fiber arrangement. 8
 - **2A.** By considering the composition of blood, explain why blood is a non-Newtonian fluid. **6**
 - **2B.** If an idealized network is upset by a sphincter (in the branch C) shown below, mention the possible changes that might happen in the total n/w with reasons, when the blood has to flow from 1 to 2? Assume that A, B, C, D, E branches are equal in diameter and length.

2C. Define viscosity and derive the Newton's law of viscosity.

BME 320 Page 1 of 2

8

3A.	Define "peripheral resistance" to blood flow in a vascular tree. Also, explain about the "seat" of vascular resistance.	6				
3B.	Explain about the viscoelastic nature of the protoplasm.					
3C.	Derive and obtain the differential equation for Maxwell model.	8				
4A.	Explain the mechanical properties of capillaries.	6				
4B.	B. Draw the pressure-volume curves for a normal functioning lung and an excised human lung (separately) and compare them.					
4C.	Diagrammatically represent the following major categories of mechanical prosthetic heart valves. (i) Caged-ball (ii) Caged-disk (iii)Tilting-disk (iv)Bileaflet pivoting-disk	8				
5A.	Describe about the following skin abnormalities which can be detected by durometer. (i) Scleroderma (ii) Lipodermatoscelrosis (iii)Neuropathic foot	6				
5B.	How do you explain the non-linear phase in the force-deformation curve for tendon and ligament?	6				
5C.	Explain the mechanical properties of skin.	8				
6A.	Write the functions performed by a muscle.	6				
6B.	Explain the biomechanics of trabecular bone.	6				
6C.	With appropriate examples, define the following muscle action. (i) Agonist (ii) Antagonist (iii)Stabilizer (iv)Neutralizer	8				

BME 320 Page 2 of 2