MANIPAL INSTITUTE OF TECHNOLOGY

Reg. No.

VI SEMESTER B.TECH. (CHEMICAL ENGINEERING)

END SEMESTER MAKE-UP EXAMINATIONS, JUN 2017

SUBJECT: OIL AND GAS RESERVOIR ENGINEERING [CHE 4002]

REVISED CREDIT SYSTEM (20/06/2017)

Time: 3 Hours

A Constituent Institution of Manipal University

MAX. MARKS: 100

Instructions to Candidates:

- ✤ Answer ALL the questions.
- ✤ Missing data may be suitably assumed.

1A.	What are the primary functions of a reservoir engineering? Which concept(s) you need									
	to aware of to evaluate the primary functions? Explain in detail.									
1B.	For a reservoir the exploration well has only penetrated the gascap. The deepest point at									
	which gas has been observed in the well is 5150 ft. A well test is conducted at a depth of									
	5100 ft, determined that the gas pressure is 2377 psia and, the gas gradient in the									
	reservoir is 0.08 psi/ft. Calculate the fluid contacts, if there is an uncertainty associated									
	with the determination of fluid contacts from pressure measurements.									
1C.	Calculate the density of the gas at standard conditions whose composition is listed									
	below:									
	Component	Methane	Ethane	Propane	Butane	Pentane	Hexane	CO ₂	Nitrogen	
	mole fraction	0.847	0.0586	0.022	0.0093	0.0052	0.0104	0.013	0.0345	
	For the above gas what is the pressure gradient in the reservoir at 2000 psia and 180 [°] F									
	(Z = 0.865)									5
2A.	Write the complete PVT analysis of oil.									8
2B.	Define R _s , B _o , B _g parameters.									6
2C.	What are investigates that usually carried out for each reservoir drive mechanisms?									6
3A.	Determine the fractional oil recovery of a solution gas drive reservoir, during depletion									
	down to bubble point pressure, whose PVT parameters are listed in below table and for									
	which									
	$C_w = 3*10^{-6} / \text{psi}; \ C_f = 8.6*10^{-6} / \text{psi}; \ S_{wc} = 0.20.$ Write remarks on the result.									8

		Pressure, psia	4000, p _i	3330, p _b	900					
	-	B _o , rb/stb	1.2417	1.2511	1.0940					
		R _s , scf/stb	510	510	122					
	-	Bg, rb/scf	-	0.00087	0.00339					
3B.	The reservoir described in Q. No: 3A will be produced down to an abandonment									
	pressure of 900 psia. State the assumptions clearly for this situation and determine an									
	expression for the recovery at abandonment as a function of the cumulative gas oil ratio									
	Rp. What do you conclude from the nature of this relationship? Plot the recovery 0-50%									
	with respect to Rp.									
4A.	Derive the following basic equation for the radial flow of a fluid in a homogeneous									
	porous medium with a neat schematic. $\frac{1}{r}\frac{\partial}{\partial r}(\frac{k\rho}{\mu}r\frac{\partial p}{\partial r}) = \phi c\rho \frac{\partial p}{\partial t}$. Clearly mention the									
	assumptions considered.									
4B.	Discuss the semi steady	state and st	eady state	condition	s of solut	ion for the above radial				
	flow differential equation.									
4C.	Linearize the above basic radial flow equation for fluids of small and constant									
	compressibility by mentioning the assumptions considered.									
5A.	A homogeneous formation in a reservoir has an average effective permeability ke. The									
	effective permeability out to a radius r_a from the well has been damaged so that it									
	average value in this region is k_a . Show that the skin factor may be expressed as									
	$S = \frac{k_e - k_a}{k_a} \ln \frac{r_a}{r_w}$ where r_w is the wellbore radius. Assume that for $r < r_a$ the flow can be									
	described under steady state conditions and that for $r > r_a$ semi steady state.									
5B.	During drilling, a well is damaged out to a radius of 4 ft from the well bore, r _a so that									
	permeability within the damaged zone, k_a is reduced to 1/100th of the undamage effective permeability, k_e . After completion the well is stimulated so that the									
	permeability out to a distance of 10 ft from the wellbore is increased to ten times the									
	undamaged permeability. What will be the PI ratio increase if the wellbore radius, $r_{\rm w}$ is									
	0.333 ft and the drainage radius, re is 660 ft?									