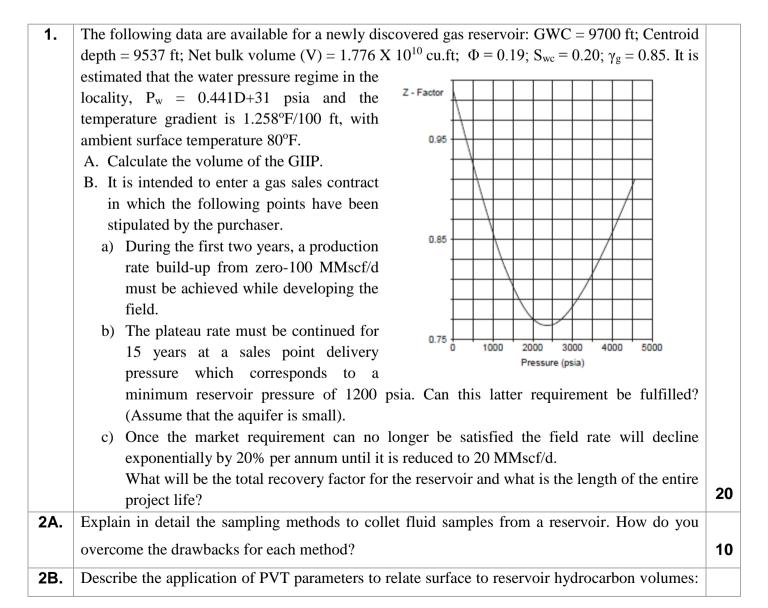
Reg. No.					

VI SEMESTER B.TECH. (CHEMICAL ENGINEERING) END SEMESTER EXAMINATIONS, APR/MAY 2017


SUBJECT: OIL AND GAS RESERVOIR ENGINEERING [CHE 4002]

REVISED CREDIT SYSTEM (27/04/2017)

Time: 3 Hours MAX. MARKS: 100

Instructions to Candidates:

- ❖ Answer **ALL** the questions.
- Missing data may be suitably assumed.

CHE 4002 Page 1 of 2

	a) above and b) below bubble point pressure with neat schematics.										
3A.	A gascap reserv	A gascap reservoir cumulative oil production N _p and cumulative gas oil ratio R _p are listed in									
	below table along with the relevant PVT parameters under the assumption that $p_i = p_b$. The size of the gascap, m and initial oil volume, N are uncertain but based on geological information and										
	volumetric calculations the values are $m = 0.4$ and $N = 115 \times 10^6$ stb. Are these values										
	confirmed by the production and pressure history? If not, what are the correct values of m and										
	N?										
	Pressure, psia	3330, $p_i = p_b$	3150	3000	2850	2700	2550	2400			
	N _p , MMstb		3.295	5.903	8.852	11.503	14.513	17.730			
	R _p , scf/stb		1050	1060	1160	1235	1265	1300			
	B _o , rb/stb	1.2511	1.2353	1.2222	1.2122	1.2022	1.1922	1.1822			
	R _s , scf/stb B _g , rb/scf	510 0.00087	477 0.00092	450 0.00096	425 0.00101	401 0.00107	375 0.00113	352 0.00119	15		
3B.				l.							
02.	Derive an expression for the free gas saturation in a solution gas drive reservoir at abandonment pressure (below bubble point).								5		
4A.	Derive the Darcy's law for a fluid flowing through porous medium, which includes dependence										
	of sand and fluid properties.							10			
4B.	Convert Darcy's law for horizontal, linear flow of an incompressible fluid from Darcy to field										
	units.								10		
5A.	A homogeneous formation in a reservoir has an average effective permeability ke. The effective										
	permeability out to a radius r _a from the well has been damaged so that its average value in this										
	region is k_a . Show that the skin factor may be expressed as $S = \frac{k_e - k_a}{k_a} \ln \frac{r_a}{r_w}$ where r_w is the										
	wellbore radius. Assume that for $r < r_a$ the flow can be described under steady state conditions										
	and that for $r > r_a$ semi steady state.										
5B.	During drilling, a well is damaged out to a radius of 4 ft from the well bore, ra so that the										
	permeability within the damaged zone, k _a is reduced to 1/100th of the undamaged effective										
	permeability, k _e . After completion the well is stimulated so that the permeability out to										
		•					-	·			
	distance of 10 ft from the wellbore is increased to ten times the undamaged permeability. What										
	will be the PI ra	atio increase if	f the wellbore radius, $r_{\rm w}$ is 0.333 ft and the drainage radius, $r_{\rm e}$ is								

****** END ******

CHE 4002 Page 2 of 2