Reg. No.

VI SEMESTER B.TECH. (CHEMICAL ENGINEERING) **END SEMESTER EXAMINATIONS, APRIL/MAY 2017**

SUBJECT: PROCESS DYNAMICS AND CONTROL [CHE3203]

REVISED CREDIT SYSTEM

Time: 3 Hours

MAX. MARKS: 100

2A.	Solve the differential equation using Laplace transform	08
	$\frac{d^2T}{dt^2} + 5\frac{dT}{dt} + 6T = z(t) \text{ given } z(t) = 1:T(0) = 1; T^{T}(0) = 0.$	
28.	Most control valves are designed to operate with signals between 3 to 15 psig. A signal-to-Open valve will fully closed at 3 psig and fully open at 15 psig. If the maximum flow rate through the valve is 120 M ³ /hr, then what would be the average valve gain? Similarly, what would be the average valve gain for Signal-to-Close valve of the same size?	06
2C.	Define the time integral performance criteria to shape the closed loop response. What are the relative advantages and disadvantages of these criteria? How would you select the most appropriate for a particular application?	06
3A	Derive the transfer function model (which relates between output and input concentrations) for continuous stirred tank reactor in which second order reaction is taking place. $(-r_A = KC_A^2)$. State all the assumptions.	10
38.	Develop a transfer function model (i.e., relates between h_2 and Q_1) for the problem given in Figure 3B. It is Assumed that flow-head relationship are linear for both the tanks and constant displacement pump is used to pump the liquid from Tank-2 to Tank-1.	10
4A.	Describe the Ziegler-Nichols tuning methodology. This procedure is often	06
4B	called the "continuous cycling" tuning method. Why? Consider the liquid level control in a single storage tank. As the manipulated	08
	variable we can use either the effluent flow rate, F_0 , or the inlet flow rate, F_i . Initially system is at steady state with $F_i=F_0=10$ m ³ /hr. and liquid level at 2 m. The cross sectional area of the tank is 6 m ² . Assume a proportional	~ ~
	CHE3203 Page 2 of 3	

	controller with $K_C=10$ and the transfer function for the measuring element and final control valve are equal to unity. a. Compute the closed loop response to a unit step increase in the desired set point when F_i is used as the manipulated variable. b. Do the same as in part (a), but consider Fo as the manipulated variable. c. Sketch the two responses above and qualitatively explain whether you would use F_i or F_0 as the manipulated variable, or it makes no difference which one you use.	
4C	Define the different terminology (with governing equation) used to describe	06
	the second order underdamped system response for step input.	
5A	A proportional derivative controller with the gain K _C and the derivative time 0.5 is used to control the two first order system connected in series (non-interacting way) having time constant $\tau_1 = 1$ and $\tau_2=0.5$. If the gain of the process is 0.5. The transfer function of the measuring element is $G_m(s) = \frac{1}{s}$. Final control element having unity transfer function. Sketch the root locus diagram for the control system and find the rage of K _C for which the control system is stable.	08
5B.	Construct a Bode diagram and find the valve of Gain Margin and Phase Margin. $ \frac{R(s) + Kc \rightarrow 1}{(s+1)} \rightarrow 1 + e^{-0.02s} + C(s) + C(s)$	12
