

MANIPAL INSTITUTE OF TECHNOLOGY MANIPAL

VI SEMESTER B.TECH. (CIVIL ENGINEERING) END SEMESTER EXAMINATIONS, APRIL/MAY 2017 SUBJECT: GROUND IMPROVEMENT TECHNIQUES [CIE 4010] **REVISED CREDIT SYSTEM**

(29/04/2017)

Time: 3 Hours

MAX. MARKS: 50

Instructions to Candidates:

✤ Answer ALL the questions.

✤ Missing data may be suitable assumed.

Q.No	Questions	Marks	CO
1A.	Explain in detail the properties of compacted cohesive soil	4	CO1
1B.	Standard compaction of a highly plastic tropical black clay (liquid limit=55%, plasticity index=30) at various water contents produced the following dry densities. $w(\%)$ 1618.52223.52527.531 $\gamma dry(kN/m^3)$ 1.471.51.541.541.501.451.41The specific gravity of the soil solid is 2.71 (a) Plot the ZAV curve for the appropriate water content and density range (b) Plot the results and draw the compaction curve (c) Determine the optimum moisture content, maximum dry density and corresponding saturation.	6	CO2
2A.	Water is pumped from a 20 m thick confined aquifer at a rate of 2000m ³ /day from a single well. In an observation hole at a distance of 70 m from the well the drawdown after 10 minutes of pumping was 0.66m; after 1000 minutes, it was 1.92m. Calculate the coefficient of permeability (m/day)	4	CO2
2B.	Given are the following details pertaining to a preloading project: Surcharge; $\Delta p=80kPa$ Consolidating soil; w=50% Liquid Limit=71 % Plasticity index=47% $\gamma=1.7t/m^3$ Cc=0.7 Cv=0.6m ² /year Ch=1.2m ² /year L=20m (longest drainage path) Sand drains; d=0.1 m s=2 m (triangular spacing)	6	CO2

Reg. No.

MANIPAL INSTITUTE OF TECHNOLOGY MANIPAL

3A.	What is the role of admixtures in pavement design? Write an essay on mechanistic design approach for flexible pavements.	5	CO1
3B.	Discuss the need for constructive use of industrial waste materials such as fly ash and slag.	5	CO2
4A.	Discuss the failure modes of reinforced earth mass.	5	CO1
4B.	Predict the pullout force of an anchored earth reinforcement element.Soil internal friction angle=35°Soil unit weight=19kN/m³Depth of fill=4mTriangular anchor element width=0.65m, angle α =70°Rods=4m long, 20mm thick	5	CO1
5A.	Write a note on soil nailing with the help of figures.	5	CO1
5B.	Discuss the applications of ground anchors and rock bolts with the help of figures.	5	CO1