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Instructions to candidates

o Answer any FIVE FULL questions.
o Missing data, if any may be suitably assumed.,

1A. For the data set given in Table Q.1A, design a polynomial learning machines whose inner
product kernel is given by

K(X, Xi) = (XTXZ' + 1)2

Table: Q.1A

Input Vector, x Desired Response, d

(—1,-1) —1
(—1,+1) 4 ke i
(+1,=1) " +1 :
(+1,+1) —1
[5]
1B. Consider a unsupervised learning problem, where you are given a training set {z(1, ..., m(m)}.

Model the data with a joint distribution p(z®, () = p(z®|2)p(2®), where 7 ~

multinomial(¢) (¢; > O,Zle ¢; = 1 and the parameter ¢; gives p(z() = 7)), and

202 = j ~ M(u;,%;). Assume that k denotes the number of values that the 2()'s can
M 24

take on. The parameters of the model are ¢, i, and ¥. To estimate them, the likelihood
for the data is given as

m k
gy D) =) log > p(a®]29; 1 m)p(2; ¢).
=1 L= :

Derive the expression for p using EM algorithm, 3]
1C. Write steps involved in the m%thod of k-fold cross validation.
[2]
2A. Describe locally weighted linear regression, and give its comparison with linear regression.
(5]

2B. State the three assumptions made while constructing a Generalized Linear Model (GLM),

[3]
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2C. Consider a classification problem in which the response variable y can take on one of

k values, so y € {1,2,...,k}. Which regression technique will solve this classification
problem? Write the model for such technique.

2]

3A. Given a dataset {(z®,9y®;i =1,... ,m)} consisting of m independent examples, where
2 € R™ are n-dimensional vectors, and y@ & {0, 1}. Model the joint distribution of
(z,y) according to:

ply) = ¢¥(1 - ¢)' ¥
o(zly =0) = W;/%W exp ( - -;—(a: — o) 8 Yz — ,ug))

plzly=1) = W%Z—W exp ( - %(sc — pl)TE_l(z - ,u,l)).

Assume that you have alveady fit ¢, o, 141, and &, and now want to make a prediction at
some new query point z. Show that the posterior distribution of the label at z takes the
form of a logistic function, and can be written as

1

] . Z — e
p(y 1{$,d), 3#’0})”’1) l—l—exp(—GT:c)’

where  is some appropriate function of ¢, 3, g, 1. [5]
3B. kxplain LMS algorithm. : 5 ety [3]

3C. A generalized linear model assumes that the response variable y (conditioned on z) is
distributed according to a member of the exponential family, that is

ply;n) = b(y) exp("T(y) — a(n))
Show that the Bernoulli distribution, which is defined as
plyi¢) = ¢'(1 - ¢)' ¥

is an example of exponential distribution.

2
4A. Given a dataset {(z,y®;i =1, ... ,m)} consisting of m independent examples, where
z® € R® are n-dimensional vectors, and y@ € {0, 1}. Model the joint distribution of
(z,y) according to:
p(y) = ¢'(1 ~ ¢)'7Y
1 1 -
p(zly =0) = Cry P exp ( = 5(93 ~ po)T 85z~ /Lto))
1 1 =
p($|y = 1) = W exp ( = '2“(113 — ,LLlJTE 1($ ——,u,l)).

Here, the parameters of our model are ¢, T, yig and p. Assume 7 (the dimension of ) is
1, so that 3 = [0?] is just a real number, and likewise the determinant of ¥} is given by
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|%] = 0. Given the dataset, it is claimed that the maximum likelihood estimates of the
parameters are given by

S
@:EZI{y():l}
i=1

E;’;l 1{y{i) o 0}$(i)
im:1 1{y(i) 5o 0}

P 1y = 1}a®
s By R

1 m . :
A= E(x(z) i) !uy“))(m(” & nuy”))T'

m“
1=1

o =

The log-likelihood of the data is
m : . - 3
U, 1o, 111, D) = log | [ p(2 @]y D; uo, 11, D)p(y; 9).
=1

By maximizing [ with respect to any two parameters, prove that the maximum likelihood
of ¢, i, 11, and ¥ are indeed as given in the formula above. (5]

4B. Compare and contrast between the Gaussian Discriminant Analysis (GDA) model and
logistic regression. (3]

4C. Explain the following:

i) Discriminative learning algorithm

2
ii) Generative learning algorithm. 2
5A. With all the necessary mathematical formalism, explain the working of Naive Bayes clas-

sifier. (5]

5B. How will Gaussian distribution behave under the following conditions for a standard
normal distribution?
i) covariance matrix () is scaled down
ii) covariance matrix (2) is scaled up
iii) off-diagonal entry in ¥ is increased
iv) off-diagonal entry in ¥ is decreased. 3
5C. In any optimization problem, we prefer objective function to be convex. What is the
advantage of having a convex function as an objective function? 2]

6A Suppose, there are a finite set of models M = {Mj, ..., My}, and you are trying to select
one among them, which describes the behavior of your data. How will you select your

model so that the empirical error is minimal? Describe various techniques for model
selection. [5)

6B State lemma for Hoeffding inequality (also known as Chernoff bound), and write its

interpretation. 3]
6C State Mercer’s theorem. ‘ 2]
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