Reg. No.	
MANIPAL INSTITUTE OF TECHNOLOGY	,
MANIPAL	
VI SEMESTER B.TECH. (INFORMATION TECHNOLOGY/COMPUTER AND	,
COMMUNICATION ENGINEERING)	
END SEMESTER EXAMINATIONS, APR/MAY 2017	
SUBJECT: STATISTICAL ANALYSIS AND APPLICATIONS [ICT 322]	
REVISED CREDIT SYSTEM (27/04/2017)	
Time: 3 Hours MAX. MARKS: 50)
Instructions to Candidates:	
 Answer ANY FIVE FULL questions. Missing data may be suitably assumed. 	
1A. Check whether the following random numbers are uniformly distributed over the	5
interval [0, 1] using Kolmogorov-Smirnov test (Take: $D_{0.05} = 0.565$).	
0.04, 0.14, 0.24, 0.34, 0.44, 0.54, 0.64, 0.74, 0.84, 0.94, 0.04, 0.14, 0.24, 0.34, 0.44, 0.54, 0.64, 0.74, 0.84, 0.94.	
1B. An agriculture cooperative claims that 90% of the watermelons shipped out are ripe	3
and ready to eat. Find the probabilities that among 20 watermelons shipped out	
i) all 20 are ripe and ready to eat.	
ii) at least 10 are ripe and ready to eat.	
1C. Explain acceptance rejection technique for generating random variate X, which is	2
uniformly distributed between 0.4 and 1.	
2A. Generate 10 random numbers using multiplicative congruential generator with m=32,	5
$a = 13$ and $X_0 = 3$. Also check whether they are independent using autocorrelation	
test. Given that $Z_{0.025} = 1.96$.	
2B. Service time at a cashier's window is normally distributed with mean 8.5 minutes and	3
variance 10.5 minutes ² . Generate a service time using the random numbers given	
below,	
0.1758 0.1489 0.2774 0.6033 0.9813 0.1052	
0.1816 0.7484 0.1699 0.7350 0.6430 0.8803	
2C. Find mean and variance of exponential distribution.	2

	X: 10 15 40 25 60 110 12 43 30 50	
	Y: 25 35 85 55 125 225 29 91 65 105	
В.	Develop a random variate generator for a random variable X with the pdf	3
	$f(x) = 1/3 \qquad 0 \le x \le 2$	
	$f(x) = 1/24$ $2 < x \le 10$	
	f(x) = 0 Otherwise	
	Also generate two random variates by taking $R_1=0.5$ and $R_2=0.8$.	
C.	State central limit theorem.	2
íΑ.	A Company insures homes in three cities, J, K, L. The losses occurring in these cities are independent. The moment-generating functions for the loss distributions of the cities are M_J (t) = $(1-2t)^{-3}$, $M_K(t) = (1-2t)^{-2.5}$, $M_L(t) = (1-2t)^{-4.5}$. Let X represent the combined losses from the three cities. Calculate $E[X]$ and $Var[X]$.	5
īB.	What is random walk? Suppose a drunkard do random walk (1D case) from the origin O, calculate the expected distance of the drunkard from the origin O after n	3
iC.	steps. It is known that expected number of steps that a probabilistic algorithm A takes is n . By choosing appropriate value for δ prove that probability of algorithm A taking more than $(1+\delta)n$ steps is less than or equal to $1/n$.	2

Page 2 of 3