

VI SEMESTER B.TECH. (COMPUTER SCIENCE AND ENGINEERING) MAKE-UP EXAMINATIONS, JUNE/JULY 2017 SUBJECT: PE-III - MACHINE LEARNING (CSE 4010) REVISED CREDIT SYSTEM (22/06/2017)

Time: 3 Hours MAX. MARKS: 50

Instructions to Candidates:

- ❖ Answer **ALL** the questions.
- Missing data may be suitably assumed.
- 1A. Explain supervised, and unsupervised learning with respect to classification and clustering.
- 1B. Explain the steps involved in character recognition.
- 1C. Justifying the convergence condition of k-means clustering, explain the procedure of forming clusters
- 2A. Consider the belief network given in **Fig 2A**. Representing causal relationship of five random variables Burglary (B), Earthquake (E), Alarm (A), John's Call (J), and the Mary's call (M). Given the conditional probability table
 - (i) Find the probability of John calls= yes.
 - (ii) find the probability that Burglary = yes given that John calls = yes.

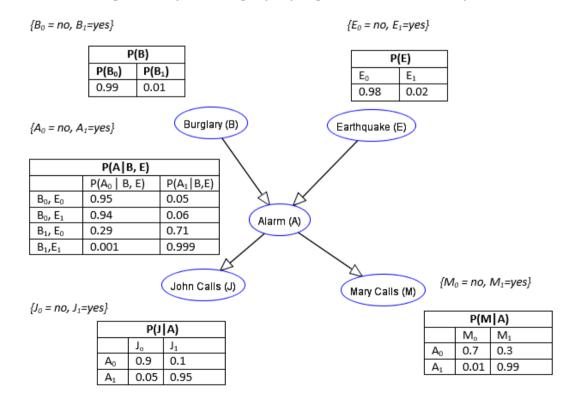


Fig 2A

CSE 4010 Page 1 of 2

2

- 2B. Explain zero-one loss function for classifying data into two classes.
- 2C. Derive the Fisher Linear Discriminant function for the two-class case.
- 3A. Perform K-NN classification of test data (-1.5,0.5), with K=4, using the training data, $X=\{x^t, r^t\}$ for $1 \le t \le 12$, in **Table 3A.** Use Euclidean distance measure.

X 1	X 2	R
3.15	-2.80	1
0.95	-1.88	1
3.31	-0.45	1
-3.78	-4.40	0
-0.25	-3.14	0
0.39	-1.04	0
-3.14	-2.93	0
1.23	-1.36	1
1.83	-2.0	0
-3.94	-0.51	1
0.91	-1.56	0
-1.55	-1.68	0

Table, 3A

3

4

3

3

4

4

- 3B. What are rough sets? Explain with an example.
- 3C. Consider a set $P=\{P_1, P_2, P_3, P_4\}$ of four varieties of paddy plants, set $D=\{D_1, D_2, D_3, D_4\}$ of the various disease affecting the plants and $S=\{S_1, S_2, S_3, S_4\}$ be the common symptoms of the disease. Let \widetilde{R} be the relation on $P \times D$ and \widetilde{S} be a relation on $D \times S$ For

- Obtain the association of the plants with the different symptoms of the diseases using max-min composition.
- 4A. Explain the concept of principal component analysis with a general example.
- 4B. Obtain the expression for change in weight of a neuron j in the output layer using back propagation algorithm.
- 4C. Explain Rosenblatt's model of perceptron with a neat diagram 2
- 5A. Explain Naïve Bayes classifier with a suitable example.
- 5B. Explain support vector machine for linearly separable case.
- 5C. Differentiate between Agglomerative and Divisive clustering 2

CSE 2103 Page 2 of 2