Reg. No.

VI SEMESTER B.TECH (ELECTRICAL & ELECTRONICS ENGINEERING) END SEMESTER EXAMINATIONS, APRIL - MAY 2017

SUBJECT: CONTROL SYSTEM DESIGN [ELE4013]

REVISED CREDIT SYSTEM

Time:	3 Hours Date: 29, Apri	2017 Max.	. Marks: 50
Instru	 ctions to Candidates: Answer ALL the questions. Missing data may be suitably assumed. Use of MATLAB is permitted. 		
1A.	Design a Lead compensator using root locus meth $G(s) = \frac{K}{s(s+5)(s+11)}$ to satisfy the following solution of ζ =0.5, reduce the peak time and Verify performance of the compensated system. The relevant design values.	od for the unity feedback system we pecifications. The system operates we dependent operates we can be a factor of the clearly write the design procedure	with with of 2. and
1B.	Obtain passive circuit realization for the above design Design a lag compensator using frequency domain with $G(s) = \frac{K}{s(s+1)(0.5s+1)}$ to satisfy the follow constant to be 5 sec ⁻¹ , phase margin 40°, gain reperformance.	ned controller. methods for the unity feedback sys owing specifications. Staic velocity e nargin to be 10dB or more. Verify	(06) stem trror the (04)
2A.	For the spring –mass-damper system shown in P/PI/PID controller for obtaining overshoot below M=1 kg; B=10N sec / m; k=20N/m; Unit step force a the form of transfer function of each controller an compensated systems. Also compare steady state er	Fig 2A, compare the performance 10% and settling time less than 1 sec pplied to the system. Give the result d step response of uncompensated ror of compensated system in each ca	e of ts in and ase. (05)
2B.	Explain Kalman filter with relevant equations, block	diagram and with a suitable example	e. (03)
2C.	Derive the optimal state feedback controller using re	educed matrix Riccati equations.	(02)
3A.	Design a linear state feedback controller to yield peatime of less than 0.5sec for the system represented by $\dot{x} = \begin{bmatrix} 0 & 1 \\ -3 & -5 \end{bmatrix} x + \begin{bmatrix} 0 \\ 1 \end{bmatrix} u$ and $y = \begin{bmatrix} 1 & 0 \end{bmatrix} x$ Evaluate the steady state error for step input ii) det than the control loop, plot the estimated states for z and state feedback controller combination and comp	k overshoot of about 10% and a sett y the state space model sign an observer which is 5 times fa ero initial values iii) design an integr pare the performance.	tling ister ator
	Draw the state model of the system with integrator a	and state feedback controller.	(07)

- Explain Model reference adaptive control scheme with relevant equations, block diagram 3B. and with a suitable example (03)
- Assess the stability of equilibrium state of a nonlinear system represented by the state 4A. equations given below. Use Lyapunov stability criterion.

$$\dot{x}_1 = -x_1 + x_1^2 x_2$$
; $\dot{x}_2 = -x_2$

Draw the region of stability and un stability.

4B. For the linear time invariant system represented by the state equation

$$\dot{x} = \begin{bmatrix} -1 & 1 \\ -1 & 1 \end{bmatrix} x$$
, assess the stability of the system, using Lyapunov stability criterion and also derive the corresponding Lyapunov function. (04)

also derive the corresponding Lyapunov function.

- **4C**. Describe the condition of boundedness and asymptotically with respect to non-linear (02) stability analysis using Lyapunov method.
- Using the describing function analysis, find the range of k for which a limit cycle is predicted 5A. for the system shown in Fig 5A.

The describing function for the non-linear element is

$$G_N = \frac{4N}{\pi M} \cos\beta + \frac{k}{\pi} [\pi - 2\beta - \sin 2\beta] \text{ for } M \ge 1, N = 1, \text{ with input } m(t) = M \sin \omega t$$

Draw n(t). Also determine the amplitude and frequency of the limit cycle. (06)

- 5B. Derive the describing function for cubic non-linearity.
- 5C. Describe subharmonic oscillation and jump resonance property of non-linear systems. (02)

ELE 4013

(04)

(02)