Reg. No.

VI SEMESTER B.TECH (ELECTRICAL & ELECTRONICS ENGINEERING) MAKE-UP EXAMINATIONS, JUNE 2017

SUBJECT: CONTROL SYSTEM DESIGN [ELE 4013]

REVISED CREDIT SYSTEM

Time	e: 3 Hours Date	: 22 June 2017	Max. Marks: 50
Instructions to Candidates:			
	 Answer ALL the questions. 		
	 Missing data may be suitably assum 	ed.	
	 Use of MATLAB is permitted. 		
1A.	Design a Lead compensator using root locus method for the unity feedback system with 10		
	$G(s) = \frac{10}{s(s+1)}$ to satisfy the following	specifications. The system operates wit	h a damping
	ratio of ζ =0.5 and the undamped natural	frequency of oscillation $\omega_n = 3rad / se$	C Verify the
	performance of compensated system. Cl values.	early write the design procedure and rele	evant design
	Obtain passive circuit realization for the	above designed controller.	(06)
1B.	Design a lead compensator using freque	ncy domain methods for the unity feed	back system
	with $G(s) = \frac{4}{s(s+2)}$ to satisfy the foll	owing specifications. Staic velocity error	r constant to
	be 20 sec $^{-1}$, phase margin 50° , gain marg	gin to be 10dB or more. Verify the perfor	mance. (04)
2A.	For the spring –mass-damper system sh overshoot below 15% and settling time l	own in Fig.2A design a PID controller fo ess than 0.5 sec.	or obtaining

M=1 kg; B=3N sec / m; k=2N/m; Unit step force applied to the system. Give the results in the form of transfer function of controller and step response of uncompensated and compensated systems. Also obtain the steady state error of compensated systems. (05)

for i) the positive definite solution matrix 'P' of the Riccati equation ii) the optimal feedback gain matrix 'K' and iii) the eign values of A-BK

Design a linear state feedback controller to have the desired closed loop poles at 3A. $-1.8 \pm i2.4$ for the system state space model

$$\dot{x} = \begin{bmatrix} 0 & 1 \\ 20.6 & 0 \end{bmatrix} x + \begin{bmatrix} 0 \\ 1 \end{bmatrix} u \text{ and } y = \begin{bmatrix} 1 & 0 \end{bmatrix} x$$

Evaluate the steady state error for step input ii) design an observer with desired poles at s=-8, -8, plot the estimated states for zero initial values iii) design an integrator and state feedback controller combination and compare the performance.

Draw the state model of system with integrator and state feedback controller. (07)

- 3B. Explain adaptive control scheme with relevant equations, block diagram and with a suitable (03) example
- Assess the stability of equilibrium state of a nonlinear system represented by the state 4A. equations given below. Use Lyapunov stability criterion. Also state stability theorem.

$$\dot{x}_1 = x_2; \ \dot{x}_2 = -2x_1 - 2x_1^3 - 3x_2$$
 (06)

For the linear time invariant system represented by the state equation **4B**.

$$\dot{x} = \begin{bmatrix} -1 & 0 \\ 1 & 2 \end{bmatrix} x$$
, assess the stability of the system, using Lyapunov stability criterion and also derive the corresponding Lyapunov function. (04)

derive the corresponding Lyapunov function.

Using the describing function analysis, check whether a limit cycle exists for the system shown 5A. in Fig.5A, if exists determine the magnitude and frequency of the limit cycle. The describing function for the non-linear element is

$$G_N = \frac{k}{\pi} [2\beta + \sin 2\beta]$$
 for $M \ge 2$ and $G_N = k$ for $M < 2$, where k is the slope. Input

$$m(t) = M \sin \omega t$$

Assess the stability of limit cycle.

5B. Derive the describing function for a square non-linearity.

(07)

(03)

(05)