Reg. No.

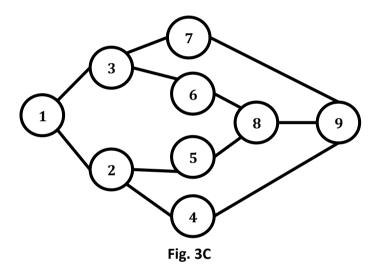
VI SEMESTER B.TECH (ELECTRICAL & ELECTRONICS ENGINEERING) END SEMESTER EXAMINATIONS, APRIL - MAY 2017

DATA STRUCTURES & ALGORITHM [ELE 4018]

REVISED CREDIT SYSTEM

			REVIS		STOTEIVI				
Time:	3 Hours		Dat	e: 29 Apr	il 2017		Max. Mai	'ks: 50	
Instrue	ctions to Cand	lidates:							
	✤ Answer A	LL the quest	ions.						
	 Missing data 	ata may be s	uitably assum	ied.					
1A.	A square matrix is called symmetric if for all values of i and j , $a[i][j] = a[j][i]$. Write an algorithm, with detailed comments, which verifies whether a given 5 x 5 matrix is symmetric.								
1B.	Let there be a single linked list whose address of the first node is stored in LIST. Write an algorithm, with detailed comments, which has 2 subroutines to perform the following operations:								
	a) One LIST.		umber of tir	nes (say, N	UM) a giver	ı item (say,	ITEM) occurs in		
	b) Othe	er finds the r	number of no	onzero elem	nents (say, N	ONZERO) in	LIST.	(04)	
1C.	Write a procedure, with detailed comments, to delete a node from a double linked list if the key (say, KEY) is found.								
2A.	Represent the arithmetic expression $P = ((A + ((B^C) - D)) * (E - (A/C)))$ in prefix and postfix notations.								
2B.	A function, InfixToPostfix(), converts the infix expression given above in Q. 2A into postfix notation using a stack. The function performs push and pop operations on the stack by calling PUSH() & POP() subroutines respectively. Write the procedure for InfixToPostfix(). Also write separate algorithms for PUSH() and POP() subroutines. The								
			sing an array.					(06)	
2C.	Consider the following queue of characters, where QUEUE is a circular array which is allocated 6 memory cells:								
			FRONT = 2		REAR = 4				
			Ţ		\downarrow				
	QUEUE:		A	С	D				

What will be FRONT and REAR values & QUEUE elements after each of the following operations?


- a) F is added to the queue
- c) K, L & M are added to the queue
- b) 2 letters are deleted d) 2 letters are deleted

(02)

3A. The inorder and preorder traversals of a binary tree are shown in the table below. Construct the binary tree.

Inorder	D	В	Н	E	А	Ι	F	J	С	G	
Preorder	А	В	D	E	Н	С	F	Ι	J	G	(02)

- 3B. Write an algorithm with detailed comments to insert an element in a given max heap tree. Assume that the heap is implemented using array. (04)
- **3C.** Explain the breadth first search (BFS) traversal for the graph shown in Fig. 3C below. (04)
- **4A.** Write an algorithm to sort an array of integers using radix sort. (05)
- **4B.** Write an algorithm to implement binary search for an array of "**n**" elements. **(05)**
- 5A. Consider the weighted graph shown in Fig. 5A. Write the steps for finding minimum spanning tree using Kruskal's algorithm. (06)
- **5B.** Explain the divide and conquer approach in quick sort.

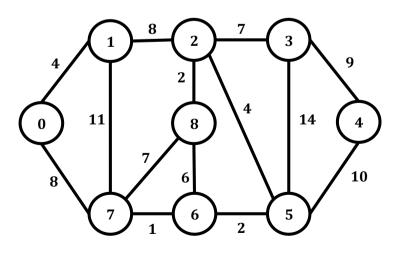


Fig. 5A

(04)