Reg. No.

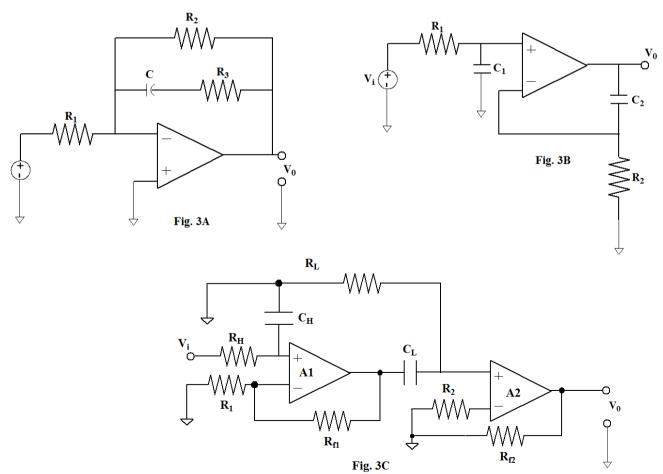
VI SEMESTER B.TECH (ELECTRICAL & ELECTRONICS ENGINEERING) MAKE UP EXAMINATIONS, JUNE 2017

SUBJECT: MEASUREMENTS & INSTRUMENTATION [ELE 3202]

REVISED CREDIT SYSTEM

Tim	e: 3 Hours	Date: 17 June 2017	Max. Marks: 50
Inst	ructions to Candidates:		
	 Answer ALL the questions. Missing data may be suitably 	assumed.	
	J	be selected to their standard values from the	table provided.
1A.	What is piezo resistive effect? With factor of strain gauges	n appropriate explanations, derive an expres	sion for gauge (03)
1B.	measured as 30.4A it was discovered	nce, the current flowing through a resistor o ed later that the ammeter reading was low by %. Find the true power as a percentage of p	v 1.2% and the
1C.	With suitable diagrams, explain expression for the shielding effective	the concept of Near Field Shielding. Hene veness.	ce, derive the
		a magnetic field is located 10 cm from a shiel hick sheet of copper. Estimate the shielding e	
2A.		37 $\Omega \pm 5\%$, 50 $\Omega \pm 2\%$, and 100 $\Omega \pm 3\%$. The basis of the total resistance of total resist	
	i) Series ii) Parallel		(03)
2B.		diagrams, justify the need for the internal r er, Derive an expression for unknown resista KDB bridge	
2C	An LVDT with a secondary voltage of	of 5V has a range of ± 25mm.	
	i) Find the core movement fro	om the center if the output voltage is -3V	
	ii) Plot the core positions versu	us output voltage varying from +3V to -4.5V	(04)
3A.	as shown in Fig. 3A. Determine its r	n a capacitor converts a low pass filter to a po- mathematical model and specify suitable com ero frequency of 10 KHz and a dc gain of 0	ponent values
3B.	0	vn in Fig. 3B , derive its mathematical mod B at 100Hz.	

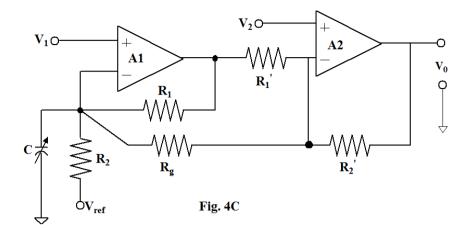
3C. Derive the mathematical model of a band pass active filter depicted in **Fig. 3C**. Also, calculate its lower and upper cut off frequencies along with the voltage amplification factor if the values of the passive components are given below:


$$R_1 = R_2 = 10K\Omega; R_{f1} = R_{f2} = 100K\Omega; R_L = R_H = 10K\Omega; C_L = 1\mu F; C_H = 1pF.$$
 (04)

- **4A.** Derive the transfer function for second order Sallen-Key filter design working as High pass filter with the help of neat schematic. Also determine, the equations for cut-off frequency and quality factor.
- 4B. Why is signal isolation important in measurements and instrumentation? With a neat diagram, Explain the working of optical isolation in photo-conductive mode of operation with the help of neat diagram.

4C. For the active amplifier circuit shown in **Fig. 4C**, through appropriate assumptions, Prove that the output voltage can be expressed as:

$$V_0 = (V_2 - V_1) \left[1 + \frac{R_2}{R_1} + \frac{2R_2}{R_g} \right] + V_{ref}$$
(04)


- 5A. Explain in detail the measurements of frequency using Lissajous patterns. Mention the factors on which Lissajous patterns are dependent. (03)
- **5B.** With a neat diagram, explain the working of a binary weighted digital-analog converter. For a reference voltage of 5V, create a table of analog voltage output of a 4 bit binary weighted digital-analog converter. Let $R = 100K\Omega$, $R_f = 400K\Omega$.
- **5C.** With the help of neat block diagram explain working of a Digital Energy Meter focusing on Signal Measurement, it's conditioning as well as it's display.

(03)

(04)

(03)

Standard Resistor Values (±5%)								
1.0	10	100	1.0K	10K	100K	1.0M		
1.1	11	110	1.1K	11K	110K	1.1M		
1.2	12	120	1.2K	12K	120K	1.2M		
1.3	13	130	1.3K	13K	130K	1.3M		
1.5	15	150	1.5K	15K	150K	1.5M		
1.6	16	160	1.6K	16K	160K	1.6M		
1.8	18	180	1.8K	18K	180K	1.8M		
2.0	20	200	2.0K	20K	200K	2.0M		
2.2	_ 22	220	2.2K	22K	220K	2.2M		
2.4	_ 24	240	2.4K	24K	240K	2.4M		
2.7	_ 27	270	2.7K	27K	270K	2.7M		
3.0	30	300	3.0K	30K	300K	3.0M		
3.3	33	330	3.3K	33K	330K	3.3M		
3.6	36	360	3.6K	36K	360K	3.6M		
3.9	39	390	3.9K	39K	390K	3.9M		
4.3	43	430	4.3K	43K	430K	4.3M		
4.7	47	470	4.7K	47K	470K	4.7M		
5.1	51	510	5.1K	51K	510K	5.1M		
5.6	56	560	5.6K	56K	560K	5.6M		
6.2	62	620	6.2K	62K	620K	6.2M		
6.8	68	680	6.8K	68K	680K	6.8M		
7.5	. 75	750	7.5K	75K	750K	7.5M		
8.2	. 82	820	8.2K	82K	820K	8.2M		
9.1	. 91	910	9.1K	91K	910K	9.1M		

Standard Capacitor Values (±10%)								
10pF	100pF	1000pF	.010µF	.10µF	1.0µF	10µF		
12pF	120pF	1200pF	.012µF	.12µF	1.2µF			
15pF	150pF	1500pF	.015µF	.15µF	1.5µF	•		
18pF	180pF	1800pF	.018µF	.18µF	1.8µF			
22pF	220pF	2200pF	.022µF	.22µF	2.2µF	22µF		
27pF	270pF	2700pF	.027µF	.27µF	2.7µF			
33pF	330pF	3300pF	.033µF	.33µF	3.3µF	33µF		
39pF	390pF	3900pF	.039µF	.39µF	3.9µF			
47pF	470pF	4700pF	.047µF	.47µF	4.7μF	47uF		
56pF	560pF	5600pF	.056µF	.56µF	5.6µF			
68pF	680pF	6800pF	.068µF	.68µF	6.8µF			
82pF	820pF	8200pF	.082µF	.82µF	8.2µF			