

Reg. No.

## MANIPAL INSTITUTE OF TECHNOLOGY Manipal University SIXTH SEMESTER B.Tech. (E & C) DEGREE END SEMESTER EXAMINATION - April/May 2017 SUBJECT: CIPHER SYSTEMS (ECE – 4019)

## TIME: 3 HOURS

MAX. MARKS: 50

## Instructions to candidates

- Answer **ALL** questions.
- Missing data may be suitably assumed.

| 1A. | The intercepted ciphertext message " <b>OVZGVRCOBPRQEPUM</b> " was enciphered using a linear transformation on digraphs. It is known that a=253 and N=26. If "A-Z" corresponds to $0 - 25$ , decrypt the message.                |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1B. | Using Chinese Reaminder Theorem solve the following system of congruence:<br>X=6 mod 11<br>X=13 mod 16<br>X=9 mod 21                                                                                                             |
| 1C. | Decrypt the following message which was enciphered by using Vigenere cryptography with the key "GALILIO". The message is {"GDZXEBVKPLKPWTTAECCM"}                                                                                |
|     | (5+3+2)                                                                                                                                                                                                                          |
| 2A. | Using S-DES, encrypt the string ( <b>01110011</b> ) using the key ( <b>0111001101</b> ). Show intermediate results after each function (IP, Fk, SW, $F_K$ , IP <sup>-1</sup> ). Use the data given in Fig. Q2A.                  |
| 2B. | Find (x, y) for the following simultaneous equations.<br>$480 \text{ x} + 971 \text{ y} = 416 \mod 1111$<br>$297 \text{ x} + 398 \text{ y} = 319 \mod 1111$                                                                      |
| 2C. | Write short note on Output Feedback mode of DES.                                                                                                                                                                                 |
|     | (5+3+2)                                                                                                                                                                                                                          |
| 3A. | Suppose that the plaintext "frid" is encrypted using a 2x2 Hill cipher to yield the ciphertext " <b>PQCF</b> ". The alphabets A-Z corresponds to $0 - 25$ . Find the key matrix and decrypt the message " <b>CQLWMGOKTZOF</b> ". |
| 3B. | Explain AES key generation with neat diagrams.                                                                                                                                                                                   |
| 3C. | Multiply the polynomial $0x6C$ and $0x3F$ in $GF(2^8)$ using the modulo polynomial $0x11B$ using shift left and XOR method                                                                                                       |
|     | (5+3+2)                                                                                                                                                                                                                          |
| 4A. | With a neat block diagram explain the Blowfish algorithm.                                                                                                                                                                        |
| 4B. | Find the inverse of 0x55 using the irreducible polynomial 0x11B.                                                                                                                                                                 |
| 4C. | Explain the Diffie-Hellman key exchange algorithm                                                                                                                                                                                |
|     | (5+3+2)                                                                                                                                                                                                                          |
| 5A. | In RSA, given n=12091 and e=13. Encrypt the message "THIS" using the 00 to 25 encoding scheme. Here plaintext are digraph and ciphertext are trigraph                                                                            |
| L   |                                                                                                                                                                                                                                  |

5C. Find all QR's and QNR's in  $Z_7^*$ .

## (5+3+2)

| Kay concretion | P10       | 3 | 5 | 2 | 7 | 4 | 10 | 1  | 9 | 8 | 6 |
|----------------|-----------|---|---|---|---|---|----|----|---|---|---|
| Key generation | <b>P8</b> | 6 | 3 | 7 | 4 | 8 | 5  | 10 | 9 |   |   |
|                | IP        | 2 | 6 | 3 | 1 | 4 | 8  | 5  | 7 |   |   |
| Encryption     | E/P       | 4 | 1 | 2 | 3 | 2 | 3  | 4  | 1 |   |   |
|                | P4        | 2 | 4 | 3 | 1 |   |    |    |   | - |   |

$$s0 = \begin{bmatrix} 1 & 0 & 3 & 2 \\ 3 & 2 & 1 & 0 \\ 0 & 2 & 1 & 3 \\ 3 & 1 & 3 & 2 \end{bmatrix}$$



|           | 1 | 0 | 3 | 2 |         | 0 | 1 | 2 | 3] |  |
|-----------|---|---|---|---|---------|---|---|---|----|--|
| $S_{0} =$ | 3 | 2 | 1 | 0 | с —     | 2 | 0 | 1 | 3  |  |
| $S_0 =$   | 0 | 2 | 1 | 3 | $S_1 =$ | 3 | 0 | 1 | 0  |  |
|           | 3 | 1 | 3 | 2 |         | 2 | 1 | 0 | 3  |  |