Reg. No.					

MANIPAL INSTITUTE OF TECHNOLOGY Manipal University SIXTH SEMESTER B.TECH (E & C) DEGREE END SEMESTER EXAMINATION - APRIL / MAY 2017 SUBJECT: CIPHER SYSTEMS (ECE - 4019)

FIME:	3	HO	URS	

MAX. MARKS: 50

Instructions to candidatesAnswer ALL questions.

- Missing data may be suitably assumed.
- 1A. You receive a message "YMI?YW.C" which was enciphered using an affine transformation on digraphs. It is known that a =347, b =412 and N = 29. If A-Z \rightarrow 0 -25, Space (ϕ) \rightarrow 26, '.' \rightarrow 27, '?' \rightarrow 28, decrypt the message.
- 1B. Find the smallest positive integer which leaves a remainder of 12 when divided by 31, a remainder of 87 when divided by 127 and a remainder of 91 when divided by 255.
- 1C. The relative frequencies of alphabets in a cryptogram from A to Z are as follows: 16, 05, 12, 10, 18, 09, 06, 04, 06, 03, 04, 05, 12, 14, 10, 09, 14, 20, 04, 09, 15, 02, 02, 03, 06 and 05. Calculate the index of coincidence and length of key

(5+3+2)

- 2A. You intercept the message "**ZRIXXYVBMNPO**" which you know result from a linear enciphering transformation of digraph-vectors in a 27-letter alphabet, in which A-Z have numerical equivalents 0-25, and blank(ϕ)=26. You have found that the most frequently occurring ciphertext digraphs are "**PK**" and "**RZ**.' You guess that they correspond to the most frequently occurring plaintext digraphs in the 27-letter alphabet, namely, "**E** ϕ " (E followed by blank) and "**S** ϕ " (S followed by blank). Find the deciphering matrix, and read the message.
- 2B. Evaluate 357^{31} mod 2349 using repeated squaring method.
- 2C. Add two points P and Q on the elliptic curve defined by $E_{13}(1,1)$ given P=(4, 2) and Q=(10, 6).

(5+3+2)

- 3A. Using S-DES, encrypt the string (**11011110**) using the key (**1101001011**). Show intermediate results after each function (IP, Fk, SW, F_K , IP^{-1}). Use the data given in Figure Q3A.
- 3B. Explain the key generation algorithm in AES.
- 3C. Write short note on cipher feedback mode of DES.

(5+3+2)

- 4A. In an affine block cipher system with s = 3, the 2, 3, 4 and 6's transformations are 0, 7, 5 and 4 respectively. Determine the key A and t, also determine the rest of the transformations.
- 4B. Explain RC5 encryption with the help of neat diagrams.
- 4C. For the group $G = \langle Z_8^*, x \rangle$, find: a. Order of group b. Order of each element

(5+3+2)

ECE – 4019

Page 1 of 2

- 5A. In Merkle Hellman Public crypto system, the public key is {1628, 1571, 1737, 1058, 1779, 1142, 2631, 990} you receive a message {6147, 3689, 5317, 7609}. Your private key is {m = 2753, a = 337}. If $(41)_h \rightarrow (5A)_h$ corresponds to A \rightarrow Z and each message block is a monograph, decrypt the message.
- 5B. Describe the steps involved in HMAC algorithm with a neat sketch.
- 5C. In RSA crypto system if the public key is {71, 9991} Find the private key.

(5+3+2)

Key generation	P10	3	5	2	7	4	10	1	9	8	6
	P8	6	3	7	4	8	5	10	9		
	IP	2	6	3	1	4	8	5	7		
Encryption	E/P	4	1	2	3	2	3	4	1		
	P4	2	4	3	1					-	

<i>s</i> 0 =	1 3 0 3	0 2 2 1	3 1 1 3	2 0 3 2	$s1 = \begin{bmatrix} 0\\2\\3\\2 \end{bmatrix}$	1 0 0 1	2 1 1 0	3 3 0 3
	-5	T	5	2 -	-2	T	0	2-

