	Reg. No.
1	MANIPAL INSTITUTE OF TECHNOLOGY Manipal University
	SIXTH SEMESTER B.Tech. (E & C) DEGREE END SEMESTER
	EXAMINATION - April/May 2017 SUBJECT: LINEAR ALGEBRA FOR SIGNAL PROCESSING (ECE – 4008)
	IME: 3 HOURS MAX. MARKS: 50 ructions to candidates
Insu	Answer ALL questions.
	Missing data may be suitably assumed.
1A.	Find the least square solution of the over determined system given by following system of linear equations.
	$x_1 + 3x_2 = 17$
	$5x_1 + 7x_2 = 19$
	$11x_1 + 13x_2 = 23$
1B.	Find the general flow pattern of the following network. Assuming all that the flows are all non-negative, what is the largest possible value of x_3 ?
	$20 \leftarrow \tau$
	$80 \rightarrow 12$
10	Define the following (i) leaching of a matrix (ii) Desitive considerinite matrix
1C.	Define the following (i) Jacobian of a matrix (ii) Positive semidefinite matrix
	(5+3+2)
2A.	Transform the vector $\begin{bmatrix} 3 & 2 & 1 & 1 \end{bmatrix}^{T}$ by the following sequence of operations
	 (i) Translate by -1, -1, -1 in x, y and z axes respectively. (ii) Rotate counterclockwise by 30⁰ about x axis and 45⁰ about y axis respectively.
2B.	If $x[n] = \{1,2,-4,5,6\}$ the input to an LTI system whose impulse response is $h[n] = \{1,-2,3,1,-4\}$, determine output of this system.
2C.	Diagonalaize the following matrix $\begin{bmatrix} 1 & -1 \\ 2 & -1 \end{bmatrix}$

(5+3+2)

3A.	Find the currents in the following circuit using QR factorization technique.
511.	6V $2V$
	I_{1} I_{2} I_{3} I_{3} I_{2} I_{4} Ohms
	Figure 3A
3B.	Design a matched filter for a radar system where a discrete signal has to be detected. The channel considered is AWGN having variance σ^2 . Why it is called a matched filter?
3C.	Use matrix multiplication to find the reflection of $(2, -5, 3)$ about the xy-plane
	(5+3+2)
4A.	Explain the method of estimating the frequency of a signal buried in white noise using signal subspace decomposition technique. Give a suitable example.
4B.	Write a 6-point DFT matrix and prove that it is a unitary matrix. How linear convolution can be achieved using this matrix?
4C.	Give an example to the following (i) Toeplitz matrix (ii) Markov matrix
	(5+3+2)
5A.	Find singular value decomposition of the following matrix. Mention any two applications of SVD in image processing.
	$\begin{bmatrix} 1 & -1 \\ -2 & 2 \\ 2 & -2 \end{bmatrix}$
5B.	Find the inverse of following matrix using Gauss-Jordan method.
	$\begin{bmatrix} 1 & 2 & 3 \\ 0 & 1 & 4 \\ 5 & 6 & 0 \end{bmatrix}$
5C.	Explain the process by which an image can be compressed using Eigen value decomposition.
	(5+3+2)