Reg. No.					
_					

MANIPAL INSTITUTE OF TECHNOLOGY

Manipal University

SIXTH SEMESTER B.Tech. (E & C) DEGREE END SEMESTER **EXAMINATION - April/May 2017 SUBJECT: SEMICONDUCTOR DEVICE PHYSICS (ECE -4015**

TIME: 3 HOURS MAX. MARKS: 50

Instructions to candidates

- Answer ALL questions.
- Missing data may be suitably assumed.

1A.				
	donors where the donor level is 0.2 eV below E_c . Given that E_f is 0.5 eV below E_c , calculate n_i and concentration of electrons and holes in the semiconductor at $300K$.			
	concentration of electrons and notes in the semiconductor at 5001x.			
1B.	Describe Hynes -Shockley experiment. How it differs with Hall experiment.			
1C.	Explain the importance of Fermi-Dirac statistics in determining the device characteristics			
	(5+3+2)			
2A.	Derive an expression connecting the mobility and diffusion constant of charge carriers in a semiconductor and calculate the ratio of diffusion constant and mobility at 300K.			
2B.	A Si pn junction with a cross sectional area $A=0.001$ cm 2 , is formed with $N_A=10^{-15}/$ cm 3 , $N_D=10^{-17}/$ cm 3 , Calculate			
	i) Contact potential Vo			
	ii) Space charge width at equilibrium.			
	iii) Calculate current with forward biasing 0f 0.5V. Given that $\mu_n = 1500$ cm ² /V-s, $\mu_p = 450$ cm ² /V-s, $\tilde{\tau}_n = \tilde{\tau}_p = 2.5$ mS,. Which type of carriers carries most of the current? If you want to double the electron current what should you do?			
2C.	Suggest ways of reducing the switching times in pn junction diodes			
	(3+5+2)			
3A.	Hall measurements are made on an n-type semiconductor bar of $500~\mu m$ wide and $20~\mu m$ thick. The Hall contacts are displaced 3 μm with respect to each other in the direction of current flow of 3 mA. The voltage between A and B with a magnetic field of 5 KG pointing out of the plane of the sample is $3.2mV$ and when the magnetic field is reversed the voltage changes to $-2.8mV$. What is the hole concentration and mobility.			
3B.	Consider an n-type Si sample with a doping concentration 10^{-16} /cm 3 . If it is illuminated such that the electron –hole pair at a rate of 10^{-18} /cm 3 per second are generated. Find out majority and minority carrier concentrations at steady state. Given that $\tilde{1}_p = 10^{-6}$ s. Plot the decay of the carriers			

ECE - 4015Page 1 of 2

	with time once the light source is switched off.
3C.	Briefly describe how n-channel MOSFET is fabricated
	(5+3+2)
4A.	Why some devices are named as hot electron devices? Derive an expression for the IV characteristic
	of those devices.
4B.	Compare and contrast the PN junction devices and Schottky diodes
4C.	Discuss Capacitance- Voltage characteristics of MOS capacitor
	(5+3+2)
5A.	With the aid of band diagrams describe basic operation of enhancement type n-channel MOSFET
5B.	Derive an expression for the variation of voltage across PN-junction diode when it is switched off suddenly.
5C.	
	(5+5)

ECE – 4015 Page 2 of 2