| Reg. No. |  |  |  |  |  |
|----------|--|--|--|--|--|



•

## MANIPAL INSTITUTE OF TECHNOLOGY Manipal University SIXTH SEMESTER B.TECH (E & C) DEGREE END SEMESTER EXAMINATION - APRIL / MAY 2017 SUBJECT: VLSI/ULSI PROCESS TECHNOLOGY (ECE - 4016)

## TIME: 3 HOURS

MAX. MARKS: 50

Answer ALL questions. Missing data may be suitably assumed.

1A. With respect to the data given for the two CZ processes, answer the questions given.

|                                                     | CZ Process 1                      | CZ Process 2 | Question                                                                                                                                                                            |  |  |
|-----------------------------------------------------|-----------------------------------|--------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Dopant                                              | Arsenic                           | Boron        | ***                                                                                                                                                                                 |  |  |
| Segregation<br>Coefficient                          | 0.3                               | 0.8          | ***                                                                                                                                                                                 |  |  |
| Initial Dopant<br>Concentration (cm <sup>-3</sup> ) | 10 <sup>17</sup>                  | ?            | Determine the initial concentration in process<br>2, such that seed end has concentration same<br>as the one obtained in Process1                                                   |  |  |
| Initial Dopant<br>Concentration (cm <sup>-3</sup> ) | 10 <sup>17</sup> 10 <sup>17</sup> |              | For both processes, till what percentage of melt is solidified, the dopant concentration is within 10% initial concentration?                                                       |  |  |
| Initial Dopant<br>Concentration (cm <sup>-3</sup> ) | 10 <sup>18</sup> 10 <sup>17</sup> |              | What percentage of melt should be solidified<br>in process 2 to get the concentration same as<br>that the concentration obtained in process 1<br>when 30% of melt is solidified?    |  |  |
| Initial Dopant<br>Concentration (cm <sup>-3</sup> ) | 10 <sup>17</sup> 10 <sup>17</sup> |              | For the two cases, what is the ratio of concentration when 90% melt is solidified to 10% melt is solidified?                                                                        |  |  |
| Initial Dopant<br>Concentration (cm <sup>-3</sup> ) | 10 <sup>17</sup> 10 <sup>17</sup> |              | What is the percentage of melt solidified in<br>process 2 if the ratio of concentration when<br>90% melt is solidified to 10% melt is<br>solidified is identical for the two cases? |  |  |

- 1B. What are epitaxial systems? Explain.
- 1C. What does (h k l), <h k l>, [h k l], {h k l} represent? Sketch each one of them in a unit cell.

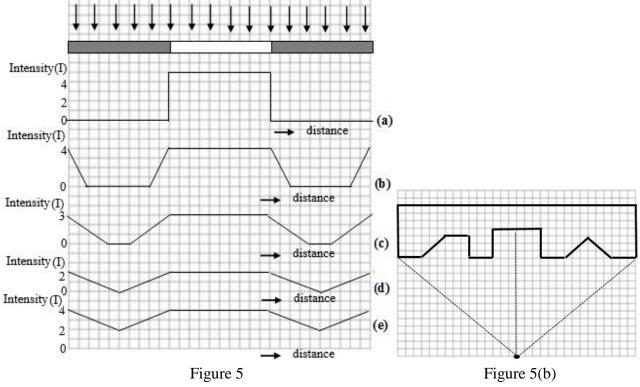
(5+3+2)

2A. A <100> silicon wafer has a 2000Å oxide on its surface

(i) How long did it take to grow this oxide at 1100°C with dry oxidation?
(ii)The wafer is put back in the furnace for wet oxidation at 1000°C. How long will it take to grow an additional 3000 Å of oxide?

(iii) A <111> type wafer is dry oxidized for the time and temperature of part(i), will the grown oxide thickness be more than 2000Å or less? Why? Explain. Boltzmann Constant= $1.38 \times 10^{-23}$  J/K= $8.617 \times 10^{-5}$  eV/K

|                                                                                                            | Dry                                   | Wet                                   |
|------------------------------------------------------------------------------------------------------------|---------------------------------------|---------------------------------------|
| $B=C_1exp(-E_1/kT)$                                                                                        | $C_1 = 7.72 \times 10^2 \mu m^2 / hr$ | $C_1 = 3.86 \times 10^2 \mu m^2 / hr$ |
| $\mathbf{D} = \mathbf{C}_1 \exp(-\mathbf{E}_1/\mathbf{K}\mathbf{I})$                                       | $E_1 = 1.23 eV$                       | $E_1 = 0.78 eV$                       |
| $B/A=C_2exp(-E_2/kT)$                                                                                      | $C_2=3.71\times10^6 \mu m/hr$         | $C_2=0.97\times10^8 \mu m/hr$         |
| $\mathbf{D}/\mathbf{A} = \mathbf{C}_2 \mathbf{C} \mathbf{A} \mathbf{P}(\mathbf{C}_2/\mathbf{K}\mathbf{I})$ | E <sub>2</sub> =2.00eV                | E <sub>2</sub> =2.05eV                |


- 2B. i) List the merits and demerits of Ion implantation over diffusion.ii) What is channelling effect in Ion implantation? What are the techniques to mitigate the same?
- 2C. Sketch within a cubic unit cell the following planes (i) (2 -1 2) (ii) (2 1 0).
- (5+3+2)3A. In a two-step process, phosphorus was diffused into a p-type silicon wafer (N<sub>B</sub> = 10<sup>16</sup> cm<sup>-3</sup>). In the deposition step, the temperature was 900°C and the diffusion time was 45 minutes. In the drive-in step, the temperature was 1100°C and the time was 60 minutes. Calculate the surface concentration and Junction depth. Solid solubility of phosporous in silicon at 900°C is 7x10<sup>20</sup> cm<sup>-3</sup>, D<sub>0</sub>=10.5cm<sup>2</sup>/sec, E<sub>A</sub>=3.69eV, Boltzmann Constant=1.38×10<sup>-23</sup>J/K=8.617×10<sup>-5</sup>eV/K.
- 3B. With necessary diagrams, explain the various p-n junction isolation techniques.
- 3C. What are high-k dielectrics? Why they are important? Explain.

(5+3+2)

- 4A. A square window of  $500\mu$ m×500 $\mu$ m is opened on a silicon wafer with SiO<sub>2</sub> as mask layer. The window edges are aligned along 110 directions. Etch rate of silicon in KOH is 1 $\mu$ m/minute and that of SiO<sub>2</sub> is 2nm/minute. Neglect the etch rate of 111 plane.
  - i) What is the etch depth and etch pattern at the end of 20minute etching?
  - ii) At what depth and time the slow etching 111 planes merge?
  - iii) What is the etched volume at the end of step2?
  - iv) What is the oxide thickness required to complete the etch process of step 2?
  - v) What should be the window size on one side to get a through hole with a window size of  $100\mu m \times 100\mu m$  on the other side?
- 4B. Explain the various ways of realizing resistors in an IC.
- 4C. What is 'Latch up' in CMOS devices? What are the possible solutions to overcome the same?

(5+3+2)

5A. Figure 5(a) to (e) represents the intensity of light falling on the PPR which is spun on a substrate material. For the PPR,  $D_{100} \ge 2I$  and  $D_0 < 2I$ . Plot the pattern of the PPR on developing.



- 5B. Figure 5(b) represents a thermal evaporation process with a point source. Is there any shadow region where no metal will be deposited? Determine the length of the wafer on which metal is deposited. Assume each cell size is 1×1mm.
- 5C. What is electromigration? Explain with necessary diagrams.(5+3+2)ECE 4016Page 2 of 2