

VI SEMESTER B.TECH. (INFORMATION TECHNOLOGY / COMPUTER AND COMMUNICATION ENGINEERING)

MAKEUP EXAMINATIONS, JUNE 2017

PROGRAM ELECTIVE III: PATTERN RECOGNITION [ICT 4020]

REVISED CREDIT SYSTEM (22/06/2017)

Time: 3 Hours

MAX. MARKS: 50

Instructions to Candidates:

- * Answer ALL the questions.
- * Missing data, if any may be suitably assumed.
- 1A. Consider the class conditional probabilities of independent binary features of two category problem. Construct the Bayesian decision boundary for $P(\omega 1)=P(\omega 2)=0.5$ and $p_1=p_2=0.8$, $p_3=0.5$ and $q_1=q_2=q_3=0.5$.
- 1B. With a neat diagram, explain design cycle of a pattern recognition system.
- 1C. What is the goal of boosting? How is it achieved?
- 2A. Draw the chain code and differential chain code for the shapes given in Fig. Q.2A. Assume unit distance in each direction. Arrow indicates the starting point.

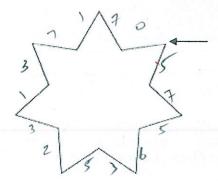


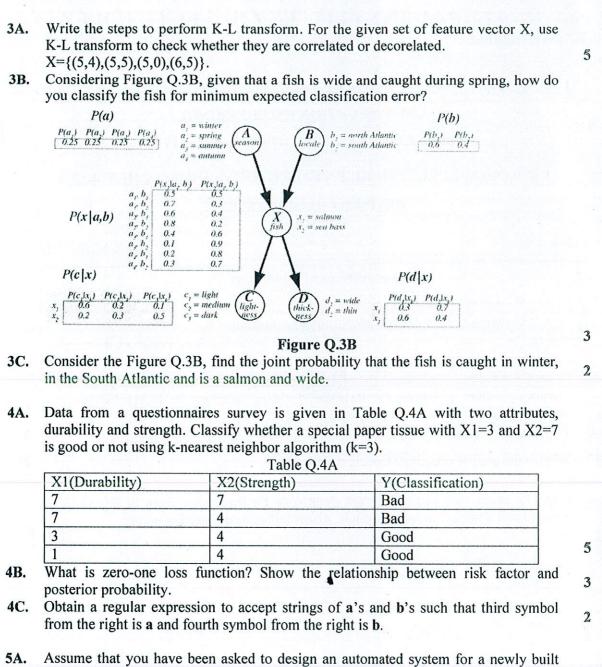
Fig. Q.2A

- 2B. Write the generalizations for Bayesian continuous features. Consider a two category case problem of Bayesian continuous features, arrive at the decision rule in terms of posterior probabilities and loss functions.
- 2C. Explain how pattern recognition finds its application in
 - i) Medical signal analysis
 - ii) Speech recognition

3

5

5


3

2

2

ICT 4020

Page 1 of 2

5A. Assume that you have been asked to design an automated system for a newly built airport which decides whether a plane reaches on time or gets delayed. You have been given only the past arrival timings of individual flights. Generate the decision rule based on:

i) A priori probability

ii) Class conditional density function

iii) Bayes formula

5B. Analyze the decision boundary obtained for the discriminant function g(x) by taking independent binary features

5C. Write the applications of finite state machines for

i) String processing and string matching

ii) Bit synchronization in communication

5

3

2