

MANIPAL INSTITUTE OF TECHNOLOGY

LIFE A Constituent Institution of Manipal University

SIXTH SEMESTER B.TECH. (INSTRUMENTATION & CONTROL ENGG.)

END SEMESTER EXAMINATIONS, JUNE 2017

SUBJECT: DIGITAL SIGNAL PROCESSING [ICE 3202]

Time: 3 Hours

MAX. MARKS: 50

Instructions to Candidates:

- ✤ Answer ALL questions.
- ✤ Missing data may be suitably assumed.

1A.	Obtain and sketch the impulse response of the following sequence using z transform.	4
	y(n) = 0.4 x(n) + x(n-1) + 0.2 x(n-2) + x(n-3) + 0.6 x(n-4).	
1B.	With mathematical expressions, explain any two properties of z-transform.	3
1C.	Determine the z-transform and ROC of the discrete time signal $x(n) = u(n)$	3
2A.	Using Z transform, perform deconvolution of the response	3
	$y(n) = \{1, 4, 6, 6, 1, -10, -8\}$ and impulse response $h(n) = \{1, 2, -1, -2\}$ to extract input $x(n)$	
2B.	Compute 4 point DFT of sequence $x(n) = 1$ for $0 \le n \le 2$. Sketch the magnitude and phase spectrum	3
2 C .	Bring out two difference between DIT and DIF radix-2 FFT.	2
2 D .	List any four properties of DFT.	2
3A.	Compute 8- point DFT of $x(n)$ by radix-2 DITFFT $x(n) = \{2, 1, 2, 1, 1, 2, 1, 2\}.$	5
3B.	Derive the relation between analog and digital frequency in bilinear transformation.	3
3C.	Bring out the difference between analog and digital filters.	2
4A.	Design a Butterworth digital IIR low pass filter using impulse invariant transformation by taking T = 1 sec to satisfy the following specifications. $0.707 \le H(e^{j\omega}) \le 1.0$; for $0 \le \omega \le 0.3 \pi$ $ H(e^{j\omega}) \le 0.2$; for $0.75 \pi \le \omega \le \pi$	5
4B.	Obtain the direct form-II structure realizations for the LTI system described by the system function,	3
	$H(Z) = \frac{0.0221z^{-1} + 0.055z^{-2} + 0.0091z^{-3}}{1 - 2.2887z^{-1} + 2.1808z^{-2} - 0.977z^{-3} + 0.171z^{-4}}$	
1C	For the second order Butterworth LDE sketch the poles on a plane and hance obtain	2

4C. For the second order Butterworth LPF, sketch the poles on s-plane and hence obtain 2 the normalized transfer function of it.

- 5A. Design a linear phase FIR low pass filter using a rectangular window of length 7 with the cutoff frequency $w_c = 0.2\pi rad/sample$.
- 5B. With relevant mathematical expressions, explain Periodogram and Bartlet method of 5 PSD estimation.