

SIXTH SEMESTER B.TECH (INSTRUMENTATION & CONTROL ENGG.) **END SEMESTER EXAMINATIONS, JUNE 2017**

SUBJECT: DIGITAL SYSTEM DESIGN [ICE 4001]

	Time: 3 Hours MAX. MARKS: 50	
	Instructions to Candidates:	
	Answer ALL questions.	
	Missing data may be suitably assumed.	
1A	What are the differences between structural and behavioral style of VHDL coding?	2
1B	Develop a state graph and transition table to detect an overlapping sequence 1101. Assume it to	3
10	Write a behavioral VHDL code based on the state graph developed above	5
1C 2A	Fix the following VHDL code	כ ר
2 n	entity exam is	4
	nort(a b : in bit:	
	c : out bit):	
	end examination;	
	architecture sequential of even is	
	nrocess(a)	
	hegin	
	c = a and b.	
	end exam:	
2B	If $A = "110"$, $B = "111"$ C "011000" then evaluate the following	3
	i. A & not B	
	ii. C ror 2	
	iii. A srl 2	
2C	Develop the circuit for a full adder using two half adders. Assuming components, with suitable	5
	interconnects, write a structural VHDL code for the same.	
3A	With a neat diagram for 4:1 mux, realize using when else statements.	2
3B	Draw a neat Y chart showing the different levels of abstractions in the 3 domains.	3
3C	What are s-a-0 and s-a-1 faults? How do they occur? What are their consequences on the circuit? How can they be tested? Explain with an example	5
4A	Write a VHDL code for a positive edge triggered T flip-flop	2
4B	Explain IF ELSE statements with an example.	3
4C	What is propagation delay? What is its relationship with setup and hold time?	5
		-

ns. The XOR gate delay is in the range of 1 to 8 ns.

(i) What is the minimum clock period for proper operation of the following network?(ii)What is the earliest time after the rising clock edge that X is allowed to change?

- 5A What is a test bench? Where are they used?
- 5B With neat diagrams, explain the various FPGA architectures.
- 5C For the timing diagram shown in Fig Q5C, develop a VHDL code.

2 3 5