Reg. No.

A Constituent Institute of Manipal University, Manipal

VI SEMESTER B.TECH END SEMESTER EXAMINATIONS, APR/MAY 2017 OPEN ELECTIVE - II

SUBJECT: INTRODUCTION TO QUALITY CONTROL [MME 3289]

REVISED CREDIT SYSTEM

Time: 3 Hours

MAX. MARKS: 50

Instructions to Candidates:

- ✤ Answer ALL the questions.
- Missing data may be suitably assumed.
- ✤ Use of SQC tables permitted.
- 1A. Explain the effect of common causes and special causes on a process. (02)
- 1B. Write a note on the graphical representation methods of frequency (03)
- **1C.** Calculate mean, standard deviation, median and mode for the following frequency distribution:

Characteristic value	24.75	24.95	25.15	25.35	25.55	25.75	
Frequency	2	8	14	18	7	1	(05

- **2A.** Explain the Appraisal costs with regard to cost of quality.
- **2B.** List the steps involved in the construction of for \overline{X} and *R* charts. (03)
- **2C.** A certain process with a standard deviation of 0.001mm has been statistically controlled at a mean of 0.036 mm. The product is currently sold to a user. The user specifications are 0.038 ± 0.004 mm.
 - (i) Assuming a normal distribution of the product what percentage of product meets the specifications?
 - (ii) If the process centering shifts to μ of 0.037, what is the probability of detecting the shift?
 - (iii) What is the percentage of nonconforming product results due to the shift In the process entering described in part (ii)?

(02)

- **3A.** What is meant by α error? How it can be minimized?
- **3B.** Write a note on *p* and *np* charts.
- **3C.** A control chart for *np* is run on batches of a certain item purchased regularly from an outside source. Each batch of 200 units is subjected to a 100% inspection as it is received. An estimate of μ_p from the most recent 30 batches received is 0.014.
 - (i) Calculate control limits for the *np* chart.
 - (ii) Use Poisson distribution table to find the approximate probability that,
 if batches should come into receiving at an average μ_p of 0.03, this fact
 would be detected on the first batch inspected.
- **4A.** Explain the control chart for nonconformities per multiple units. **(02)**
- **4B.** Write a note on OC curve.
- **4C.** The following table gives the number of defects found in 25 subgroups of certain product at final inspection:

Subgroup no.	No. of defects	Subgroup no.	No. of defects
1	8	14	25
2	16	15	15
3	14	16	9
4	19	17	9
5	11	18	14
6	15	19	11
7	8	20	9
8	11	21	10
9	21	22	22
10	12	23	7
11	23	24	28
12	16	25	9
13	9		

Determine the central line and trial control limits for a c chart. What value of c_0 and control limits would you suggest for the subsequent period?

(05)

(02)

(03)

(03)

- **5A.** Explain α risk and β risk.
- **5B.** Two parts A and B are received in an assembly operation where each part is **(04)** permanently attached to the other. If the combined width of the parts does not meet the required specification of 10.000 ± 0.020 inch, the assembled product must be scrapped. The width of part A is normally distributed with μ of 3.000 inch and σ of 0.004 inch. The width of part B is also normally distributed with μ of 7.000 inch and σ of 0.006 inch. Assembly is at random. Determine the percentage of the assembled product that will have to be scrapped.
- **5C.** A double sampling plan is $n_1 = 32$, $c_1 = 0$, $n_2 = 38$, $c_2 = 2$. Compute the probability of acceptance of a 2.0% defective lot. Assume lot size is large in comparison with sample size.

(04)