

MANIPAL INSTITUTE OF TECHNOLOGY

A Constituent Institution of Manipal University

VII SEMESTER B.TECH. (CHEMICAL ENGINEERING) MAKE UP EXAMINATIONS, JUNE/JULY 2017

SUBJECT: INDUSTRIAL WASTEWATER ENGINEERING [CHE 427] REVISED CREDIT SYSTEM

Time: 3 Hours

MAX. MARKS: 100

Instructions to Candidates:

- ✤ Answer ALL the questions.
- ✤ Missing data may be suitably assumed.

1A.	A municipal wastewater having a BOD of 250 g/m^3 is to be treated by a two	
	stage trickling filter. The desired effluent quality is 25 g/m ³ of BOD. If both of the	
	filter depth are to be 1.83 m and the recirculation ratio is 2:1. Find the required	(12 marks)
	trickling filter diameter. Data are given below: Flow rate = $7570 \text{ m}^3/\text{day}$,	
	Wastewater temperature = 20° C and $E_1 = E_2$	
1B.	What are the important operating parameters of aerobic and anaerobic process	
	and explain them?	(8 marks)
2A.	Distinguish between	
	(a) Suspended- and attached- growth processes	
	(b) Aerobic and anaerobic processes	
	(c) Nitrification and denitrification	(8 marks)
	(d) Extended aeration and Conventional ASP process	
2B.	Design an aerated grit chamber for treatment of municipal wastewater. Average	
	flow rate is 0.2 m^3 /s. Peak factor is 2.50. Assume detention time as 3 min at peak	
	flow rate, width: depth ratio as 1.2:1 and depth as 3 m. Also assume air supply of	
	$0.3 \text{ m}^3/\text{min.m}$ of length and quantity of grit as $0.05 \text{ m}^3/1000 \text{ m}^3$ at peak flow.	(12 marks)
3A.	Derive an expression for mean cell residence time, Sludge production rate and	
	mass balance with biomass and with substrate using suitable mass balance	(12 marks)
	equations for the sludge wastage from aeration tank.	

3B.	A mechanically aerated lagoon provides 5 days detention time to a wastewater	
	flow of 20,000 m^3 /day. Assume length: width as 4 :1. If its depth is to be restricted	
	to 6m, estimate the lagoon dimensions so that the dispersion number D/uL will be	
	0.5 or less.	(8 marks)
4A.	Draw a bacterial growth curve and explain the significance of various phases.	
	Show that	
	$Y_{obs} = \frac{Y_T}{(k_b)}$	
	$\left(1+\frac{\kappa_d}{\mu}\right)$	
475		(10 marks)
4B.	A wastewater treatment plant discharges 1.0 m ³ /s of effluent having an ultimate	
	BOD of 40.0 mg/l into a stream flowing at 10.0 m ⁻ /s. Just upstream from the	
	discharge point, the stream has an ultimate BOD of 3.0 mg/l. The deoxygenation	
	constant K_d is estimated as 0.22 day .	
	(1) Assuming complete and instantaneous mixing, find the ultimate BOD of the mixture of waste and river just downstream from the outfall	
	(ii) A suming a constant cross sectional cross for the stream equal to 55 m^2 what	(10 montra)
	(ii) Assuming a constant cross-sectional area for the stream equal to 55 iii, what ultimate BOD would you expect to find at a point 10 000m downstream	(10 marks)
54	L aboratory studies on a wastewater having a total BODu of 150 mg/l have shown	
011.	that after 45 min of contact with an activated sludge culture initially containing	
	2000 mg/l MLVSS, the filtrate BOD _y is reduced to 15 mg/l. Determine the	
	aeration volume for the contact and stabilization tanks using the following design	
	criteria.	
	$X_c = 200 \text{ mg/l as MLVSS}$	
	$\theta_{\rm c} = 8 \text{ days}, f = 0.8, \text{SVI} = 110$	
	$MLVSS = 0.8 \times MLSS$	
	$S_e = 15 \text{ mg/l of BOD}_u, Q = 2 \text{ MGD}$	(12 marks)
	$Y_T = 0.5, k_d = 0.1 \text{ day}^{-1}$	
5 B .	Explain the different modifications of ASP with a neat flow diagram	
		(8 marks)
6A.	(i)Write a note on Scour velocity, Approach velocity and Flow velocity.	
	(ii)Explain Streeter-Phelps Oxygen Sag curve equation	(12 marks)
6B.	Explain different methods of sludge digestion in detail.	(8 marks)