

MANIPAL INSTITUTE OF TECHNOLOGY

FIRST SEMESTER B.TECH. (COMMON TO ALL BRANCHES) **END SEMESTER EXAMINATIONS, November, 2017**

SUBJECT: ENGINEERING MATHEMATICS-I [MAT 1101]

REVISED CREDIT SYSTEM 15/11/2017

Time: 3 Hours

MAX. MARKS: 50

Instructions to Candidates:

- ✤ Answer ALL the questions.
- ✤ Missing data may be suitably assumed.

1A.	Solve by Gauss Seidel method. Carry out 4 iterations correct up to 4 decimal places 10x - y + 2z = 6 -x + 11y - z + 3w = 25 2x - y + 10z - w = -11 3y - z + 8w = 15	4
1 B .	Construct an orthonormal basis from the following set of vectors (0,1,0), (2,3,0) and (0,2,4) for E^3 .	3
1C.	Find a root of the equation $xe^{-x} = \cos x$ using method of false position correct to four decimal places [1, 2] carry out 3 iterations.	3
2A.	Find the real root of $f(x)=0$, if $f(-1)=2$, $f(2)=-2$, $f(5)=4$ and $f(7)=8$ by Lagrange's method.	4
2B.	Find by Taylor's series method of order four the value of y at x = 0.3 to four decimal places from $\frac{dy}{dx} = 2y + 3xe^x$, y(0)=0.	3
2C.	Solve $xy' = y + x^3 \sin x$ with $y(\pi) = 0$.	3

3A.	Find the eigen values and corresponding eigen vectors of $A = \begin{bmatrix} 3 & -1 & 2 \\ 3 & -1 & 6 \\ -2 & 2 & -2 \end{bmatrix}$	4
3B.	Solve $\frac{d^2 y}{dx^2} - 2\frac{dy}{dx} = xe^x$	3
3C.	The velocities of a car (running on a straight road) at intervals of 10 kms are given below.S in kms0102030405060V in kms/hr47586465615238Apply Simpson's $3/8^{th}$ rule to find the time taken by the car to cover 60kms.	3
4 A.	(i) Prove that a maximal linear independent set of vectors forms a basis.(ii) "V is a vector space over a field F." What do you mean by a field here?	4
4B.	Solve $(D^2 - 2D + 1)y = e^x \log x$ by variation of parameters.	3
4C.	Evaluate $\frac{d^2 y}{dx^2}$ at x=1.5 from the following table. x 1 1.2 1.4 1.6 y 47 58 64 65	3
5A.	Solve $x + y + z = 0$, $x - 2y + 2z = 4$, $x + 2y - z = 2$ by Gauss Jordan method.	4
5B.	Using Runge-Kutta method of fourth order, solve for y at x = 1.5 given that $\frac{dy}{dx} = \frac{2x - y^2}{x^2 + y}$ with x ₀ = 1, y ₀ = 0 and h = 0.5.	3
5C.	Solve $x^2 \frac{d^2 y}{dx^2} - x \frac{dy}{dx} + 4y = \cos(\log x) + x \sin(\log x)$	3