

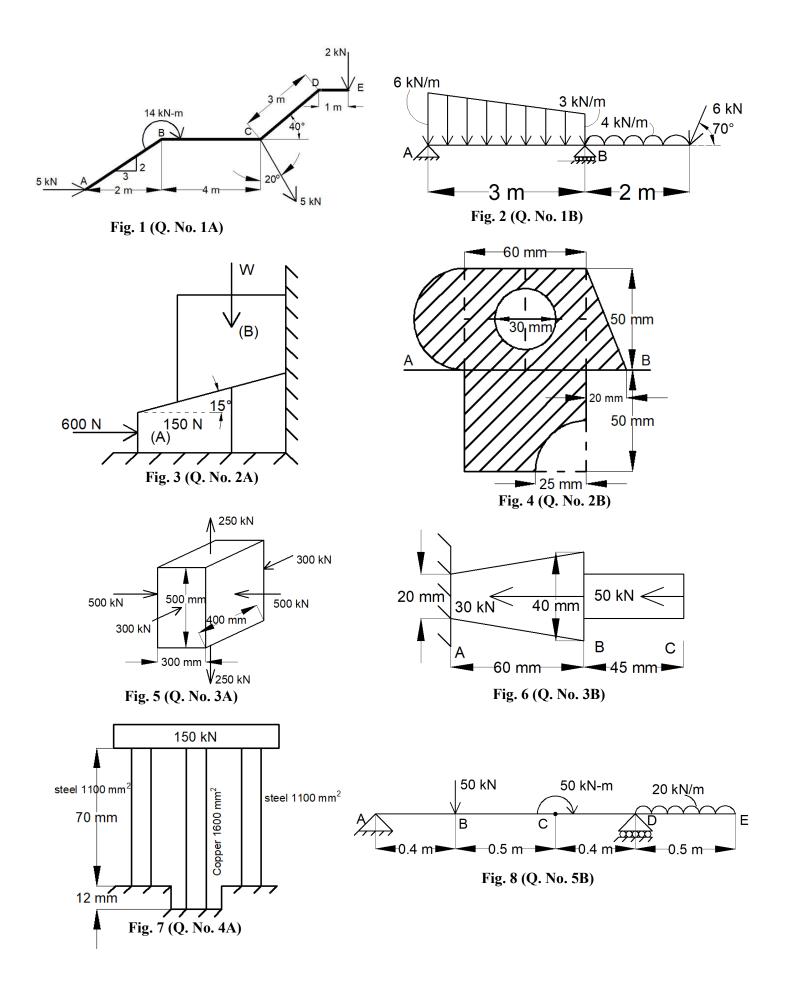
AANIPAL INSTITUTE OF TECHNOLOGY

I SEMESTER B.TECH. (CIVIL ENGINEERING)

END SEMESTER EXAMINATIONS, NOV 2017

SUBJECT: MECHANICS OF SOLIDS [CIE 1001]

REVISED CREDIT SYSTEM (22/11/2017)


Time: 3 Hours

MAX. MARKS: 50

Instructions to Candidates:

- ✤ Answer ALL the questions.
- ✤ Missing data may be suitable assumed.

1A.	Locate the resultant of force system acting on a body as shown in fig. 1, with respect to point 'B'.			5
1B.	Determine the support reactions at 'A' and 'B" for a beam shown in fig. 2			5
2A.	What is the force 'W' required to stop the block 'B' moving upwards (fig. 3), if weight of block 'A' is 150 N. Co efficient of friction for all contact surfaces is 0.3.			5
2B.	Determine the moment of inertia of a geometrical fig. 4, with respect to the axis 'A-B'			5
3A.	A block is subjected to forces as shown in fig.5. If $E = 115$ MPa and $\mu = 0.35$, determine the change in volume. What change must be made to the 250 kN force so that the total strain is zero.			3
3B.	Determine the total change in length of bar shown in fig. 6. Details of the segments as follows,			
	Segment	Cross sectional details	Elastic modulus	2
	AB (Tapered bar with circular cross section)	Diameter varies from 20 mm to 40 mm	100 GPa	
	BC	1450 mm ²	70 GPa	
3C.	Derive a relationship between young's modulus of elasticity (E) and modulus of rigidity (G)			5
4A.	A compound bar is made up of two steel bars and a copper bar carries a weight of 150 kN as shown in fig. 7 . If the temperature is raised by 50°C, Determine the load carried by each bar. Consider, $\alpha_{st} = 1.1 \times 10^{-5/\circ}$ C. $\alpha_{cu} = 2 \times 10^{-5/\circ}$ C. $E_{st} = 210$ GPa, $E_{cu} = 100$ GPa			
4B.	Derive an expression for the total deformation of a tapered bar of rectangular cross section of uniform thickness (b). Depth of the bar varies from ' d_1 ' to ' d_2 ' ($d_1 < d_2$) over a length 'L' subjected to an axial load 'W'			
5A.	A cylinder of 750 mm diameter and 2 m in length has to sustain an internal pressure of 2 N/mm ² . If permissible tensile stress is 30 N/mm ² , permissible shear stress is 10 N/mm ² and permissible change in diameter is 0.45 mm, find the minimum thickness of the metal required. Consider $E = 70$ GPa and $\mu = 0.25$			5
5B.	Draw shear force and bending moment diagram for the beam shown in fig 8 . Also, locate the point of contra flexure, if any.			5

CIE 1001