Reg.No.					

INTERNATIONAL CENTRE FOR APPLIED SCIENCES (Manipal University) I SEMESTER B.Sc. (Applied Sciences) EXAMINATION- NOV. 2017 SUBJECT: MATHEMATICS - I (IMA 111)

Monday, 13 November 2017

Time: 3 Hours

Max. Marks: 100

- ✓ Answer ANY FIVE full Ouestions.
- ✓ Missing data, if any, may be suitably assumed
- **1A.** If $= e^{m \cos^{-1} x}$, prove that $(1 x^2)y_2 xy_1 = m^2 y$ and hence show that

$$(1-x^2)y_{n+2} - (2n+1)xy_{n+1} - (n^2+m^2)y_n = 0.$$

1B. Find the area between the curve $x(x^2 + y^2) = a(x^2 - y^2)$, a > 0 and its asymptote. Also find the area of its loop.

1C. Obtain a reduction formula for $\int_{-\infty}^{\infty} \sin^n x dx$ when n is a non-negative integer and evaluate

$$\int_{0}^{\frac{\pi}{2}}\cos^{4}xdx.$$

(7+7+6)Show that the evolute of the hyperbola $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$ is $(ax)^{\frac{2}{3}} - (by)^{\frac{2}{3}} = (a^2 + b^2)^{\frac{2}{3}}$. 2A.

Find the area enclosed between one arc of cycloid $x = a(\theta - sin\theta)$, **2B**.

 $y = a(1 - \cos\theta), a > 0$ and its base.

Evaluate $I_n = \int_0^a (a^2 - x^2) dx$, where n is a positive integer. Hence show that $I_n =$ **2C.** $\frac{2n}{2n+1}a^2I_{n-1}.$

(7+7+6)

Show that $\frac{x}{1+x} < \log(1+x) < x$, for all x > 0. Hence show that $0 < [\log(1+x)]^{-1} < 1$ 3A. 1 for all x > 0.

3B. Find the volume of the solid obtained by revolving the Cissoid $y^2(2a-x) = x^3$, a > 0 about its asymptote.

3C. Trace the parametric curve $x = a(t - \sin t)$ and $y = a(1 + \cos t)$, a > 0 with explanation.

(7+7+6)

4A. Expand $tan^{-1}x$ in powers of (x - 1) upto terms containing $(x - 1)^4$

4B. Find the entire length 'S' of the curve $x = a\cos^3\theta$; $y = a\sin^3\theta$, a > 0.

4C. Trace $r^2 = a^2 cos 2\theta$, a > 0 with explanation.

(7+7+6)

5A. i) Find the angle between the curves $r^2 \sin 2\theta = 4$ and $r^2 = 16 \sin 2\theta$.

ii) Prove that
$$\frac{ds}{dt} = \sqrt{\left(\frac{dx}{dt}\right)^2 + \left(\frac{dy}{dt}\right)^2}$$
.

5B. From the following table, find the number of students who obtained marks between 40 and 45:

Marks	30-40	40-50	50-60	60-70	70-80
obtained					
No.of	31	42	51	35	31
students					

5C. Trace the curve $r = a(1 + sin\theta)$, a > 0 with explanation.

(7+7+6)

6A. For the cardioid $r = a(1 + cos\theta)$, a > 0 show that the square of the radius of curvature at any point (r, θ) is proportional to r. Also find the radius of curvature when $\theta = 0, \frac{\pi}{4}$.

6B. i) Derive the Newton's forward interpolation formula.

ii) With the suitable assumptions find the missing terms in the following table

Х	1	2	3	4	5	6	7
У	103.4	97.6	122.9	-	179.0	-	195.8

- 6C. Test for the convergence of the series $\frac{2}{1} + \frac{2 \cdot 5}{1 \cdot 5} + \frac{2 \cdot 5 \cdot 8}{1 \cdot 5 \cdot 9} + \frac{2 \cdot 5 \cdot 8 \cdot 11}{1 \cdot 5 \cdot 9 \cdot 13} + \cdots$ (7+7+6)
- **7A.** Find the nth derivative of $y = \frac{x^2}{(x-1)^2(x+2)}$
- **7B.** Find the interpolating polynomial for the following data and hence find the value of f(9).

х	5	7	11	13	17
f(x)	150	392	1452	2366	5202

7C. Evaluate: (i)
$$\lim_{x \to 0} \frac{e^x \sin x - x - x^2}{x^2 + x \log(1 - x)}$$
 (ii) Evaluate $\lim_{\theta \to \frac{\pi}{2}} \frac{\log(\theta - \frac{\pi}{2})}{\tan \theta}$.

- 8A. Show that $\frac{v-u}{1+v^2} < tan^{-1}v tan^{-1}u < \frac{v-u}{1+u^2}$ for 0 < u < v. Hence deduce $\frac{\pi}{4} + \frac{23}{5} < tan^{-1}\left(\frac{4}{3}\right) < \frac{\pi}{4} + \frac{1}{6}$.
- **8B.** Find the equation of the sphere having the circle
- $x^{2} + y^{2} + z^{2} + 10y 4z 8 = 0$, x + y + z = 3 as a great circle.
- 8C. Show that the series $\frac{x}{\sqrt{3}} \frac{x^2}{\sqrt{5}} + \frac{x^3}{\sqrt{7}} \cdots$ is absolutely convergent for

-1 < x < 1, Conditionally convergent for x = 1.

(7+7+6)

