-						
	Reg. No.					
	0					

INTERNATIONAL CENTRE FOR APPLIED SCIENCES (Manipal University) II SEMESTER B.S. DEGREE EXAMINATION – NOV. 2017 SUBJECT: MATHEMATICS -II (MA 121) Tuesday, 14 November 2017

Time: 3 Hours

Max. Marks: 100

- *Answer ANY FIVE full Questions.*
- Draw diagrams and equations whenever necessary.

1A.(i) Determine whether \vec{F} is conservative. If so, find its scalar potential.

$$\vec{F} = (y^2 cosx + z^3) i + (2y sinx - 4) j + (3xz^2 + 2)k$$

(ii) Let
$$\vec{A} = x^2 z^2 i - 2y^2 z^2 j + xy^2 z k$$
. Find $curl(curl \vec{A})$.

1B. Test for consistency and solve the following system of equations by using Gauss-elimination x + y - 2z + 3w = 0

$$x-2y+z-w=0$$

method.
$$4x+y-5z+8w=0$$
$$5x-7y+2z-w=0$$

1C. If $z = x^2 + y^2$, $x = \cos uv$, $y = \sin(u + v)$, find $\frac{\partial z}{\partial u}$ and $\frac{\partial z}{\partial v}$ interms of u and v.

2A. If
$$u = cosec^{-1} \left[\frac{\sqrt{x} + \sqrt{y}}{\sqrt[3]{x} + \sqrt[3]{y}} \right]^{1/2}$$
 prove that $x^2 \frac{\partial^2 u}{\partial x^2} + 2xy \frac{\partial^2 u}{\partial x \partial y} + y^2 \frac{\partial^2 u}{\partial y^2} = \frac{\tan u}{12} \left(\frac{13}{12} + \frac{\tan^2 u}{12} \right).$

2B.(i) Find the area common to the circles $r = a \sin \theta$ and $r = a \cos \theta$ by using double integrals.

(ii) Evaluate
$$\iint_{R} xy \, dx dy$$
, where *R* is the region bounded by $y^2 = 4x$; $y = 2x - 4$.

2C. Find the inverse of the following matrix by using Gauss-Jordan method $\begin{bmatrix} 1 & 2 & 1 \\ 3 & 2 & 3 \\ 1 & 1 & 2 \end{bmatrix}$

(8+8+4)

(8+8+4)

3A.(i) If
$$z = f(x, y)$$
 and $x = r\cos\theta$, $y = r\sin\theta$, prove that $\left(\frac{\partial z}{\partial x}\right)^2 + \left(\frac{\partial z}{\partial y}\right)^2 = \left(\frac{\partial z}{\partial r}\right)^2 + \frac{1}{r^2}\left(\frac{\partial z}{\partial \theta}\right)^2$.

(ii) Discuss the maxima and minima of the function

$$f(x,y) = sinx + siny + sin(x+y), 0 \le x, y \le \frac{\pi}{2}$$

3B. Prove that $\int_{0}^{1} \frac{x^{2}}{\sqrt{1-x^{4}}} dx \times \int_{0}^{1} \frac{x^{2}}{\sqrt{1+x^{4}}} dx = \frac{\pi}{4\sqrt{2}}$

3C. Prove that $\nabla^2 r^n = n(n+1)r^{n-2}$.

(8+8+4)

- **4A.** (i) Let $\vec{F} = 4xz\hat{\imath} y^2\hat{\jmath} + yz\hat{k}$. Evaluate $\iint_S \vec{F} \cdot \vec{n} \, dS$ Where S is the surface of the cube bounded by x = 0, x = 1, y = 0, y = 1, z = 0 and z = 1.
 - (ii) Evaluate $\iiint \nabla \cdot \vec{r} dr$, where \vec{r} is a position vector.
- **4B.** Define orthogonal and orthonormal set of vectors. Using Gram Schmidt process construct an orthonormal set of basis vectors of $V_3(R)$ for given vectors $a_1 = (1, -1, 0), a_2 = (2, -1, -2), a_3 = (1, -1, -2)$

4C. By changing the order of integration evaluate
$$\int_{0}^{4a} \int_{\frac{x}{4a}}^{2\sqrt{ax}} dy dx$$

(8+8+4)

5A. (i) Verify Green's theorem in plane for $\oint_C (xy + y^2)dx + x^2dy$ where C is a closed curve of the region bounded by y = x and $y = x^2$.

(ii) If
$$z = e^{ax+by} f(ax - by)$$
 prove that $b \frac{\partial z}{\partial x} + a \frac{\partial z}{\partial y} = 2abz$.

5B. By using double integrals, find the volume bounded by the cylinder $x^2 + y^2 = ay$ and the sphere $x^2 + y^2 + z^2 = a^2$

5C. If
$$z = f(x, y)$$
, and $x = e^u + e^{-v}$, $y = e^{-u} + e^v$ prove that $\frac{\partial z}{\partial u} - \frac{\partial z}{\partial v} = x \frac{\partial z}{\partial x} - y \frac{\partial z}{\partial y}$.
(8+8+4)

6A. If $z = x^m f\left(\frac{y}{x}\right) + x^n g\left(\frac{x}{y}\right)$ prove that

$$x^{2}\frac{\partial^{2}z}{\partial x^{2}} + 2xy\frac{\partial^{2}z}{\partial x\partial y} + y^{2}\frac{\partial^{2}z}{\partial y^{2}} + mnz = (m+n-1)\left(x\frac{\partial z}{\partial x} + y\frac{\partial z}{\partial y}\right)$$

6B. Evaluate the following integrals.

i)
$$\int_{0}^{2} x (8-x^{3})^{\frac{1}{3}} dx$$
 ii) $\int_{5}^{7} (x-5)^{6} (7-x)^{3} dx$

6C. Find the volume inside the cone $x^2 + y^2 = z^2$ bounded by the sphere $x^2 + y^2 + z^2 = a^2$ by converting to spherical polar co-ordinates.

(8+8+4)

7A.(i) If sides of a triangle *ABC* vary in such a way that its circum radius is constant prove that $\frac{\delta A}{\cos A} + \frac{\delta B}{\cos B} + \frac{\delta C}{\cos C} = 0.$

(ii) Find f(r) such that $f(r)\vec{r}$ is solenoidal.

7B. If R is the region bounded by x = 0, y = 0 and x + y = 1, then evaluate the following double integrals by using transformations x + y = u, x - y = v.

i)
$$\iint_{R} \sin\left(\frac{x-y}{x+y}\right) dx dy$$
 ii)
$$\iint_{R} \cos\left(\frac{x-y}{x+y}\right) dx dy$$

7C. Find the values of *a* and *b* such that the surface $ax^2 - byz = (a + 2)x$ will be orthogonal to the surface $4x^2y + z^3 = 4$ at P(1,-1,2)

(8+8+4)

- **8A.i)** Find the dimensions of rectangular cube open at top, of maximum capacity whose surface area is 432 Sq.cm.
 - **ii**) If $u = e^{xyz}$, find the value of $\frac{\partial^3 u}{\partial x \partial y \partial z}$
- **8B.** i) Test whether the set $B = \{(1,1,0), (3,0,1), (5,2,2)\}$ forms a basis for \mathbb{R}^3 . If so represent (1,2,3) in terms of basis vectors.
 - ii) Prove that the vectors $a_1, a_2, ..., a_m$ from E^n are linearly dependent if and only if one of the vectors is a linear combination of the other.

8C. Prove that
$$\beta(m,n) = \frac{\Gamma m \Gamma n}{\Gamma(m+n)}$$

(8+8+4)