

(Manipal University)

THIRD SEMESTER B.S. DEGREE EXAMINATION - OCT. / NOV. 2017

SUBJECT: MATHEMATICS - III (MA 231)

(COMMON TO ALL BRANCH)

Monday, 30 October 2017

Time: 3 Hours

Max. Marks: 100

✓ Answer ANY FIVE full Questions.

✓ Missing data, if any, may be suitably assumed

1A. Solve: $\frac{dy}{dx} = \sin(x + y) + \cos(x + y)$.

1B. Solve by the method of separation of variables $\frac{\partial u}{\partial x} = 2\frac{\partial u}{\partial t} + u$.

1C. Find the inverse Laplace transform of $\frac{s+2}{s^2-4s+13}$. (7 + 7 + 6)

- **2A.** Solve: $xy(1 + xy^2)\frac{dy}{dx} = 1$.
- **2B.** Solve $\frac{dy}{dx} = x + y$ given y(1) = 0 and find y at x = 1.1 and x = 1.2 to five decimal places taking h = 0.1 by Taylor's series method (carry up to fourth order derivatives).

2C. Apply Convolution theorem to evaluate $L^{-1}\left[\frac{s^2}{(s^2+1)(s^2+9)}\right]$. (7 + 7 + 6)

- **3A.** Solve: $(3x^2y^4 + 2xy) dx + (2x^3y^3 x^2) dy = 0.$
- **3B.** Solve $\frac{dy}{dx} = y + e^x$, y(0) = 0 by Euler's modified method, for x = 0.2 and x = 0.4 taking h = 0.2. Carry out two iterations for each step.
- **3C.** Solve $y'' 2y' + y = e^t$, y(0) = 2, y'(0) = -1 using Laplace transform method. (7 + 7 + 6)
- **4A.** Solve: $\frac{d^2y}{dx^2} 2\frac{dy}{dx} + y = xe^x sinx.$
- **4B.** Given $\frac{dy}{dx} = 3x + \frac{y}{2}$, y(0) = 1. Compute y at x = 0.2 and x = 0.4 by taking h = 0.2 using Runge Kutta method of order four.
- **4C.** Given that f(z) = u + i v is analytic and $v(x, y) = -\sin x \sin hy$. Show that v(x, y) is harmonic. Find the conjugate harmonic of v(x, y).

(7 + 7 + 6)

- **5A.** Find the Laplace transform of $f(t) = \cos^2 t + \sin 2t \sin 3t + \sin 3t \cos 4t$.
- **5B.** Given that f(z) = u + iv is analytic and $u(r, \theta) = \left(r \frac{1}{r}\right) \sin \theta, r \neq 0$.

Find the orthogonal trajectories of the family of curves, u = c, a constant.

5C. Solve
$$\frac{d^2y}{dx^2} + a^2y = \sec^2 ax$$
 by using method of variation of parameters.
(7 + 7 + 6)

- **6A.** Evaluate the integral $\int_{0}^{\infty} \frac{e^{-t} \sin^2 t}{t} dt$ using Laplace transform.
- **6B.** Solve: $(2x-1)^2 \frac{d^2y}{dx^2} + (2x-1)\frac{dy}{dx} 2y = 8x^2 2x + 3.$
- 6C. Evaluate $\oint_C \frac{dz}{z^2+9}$, where C is |z-3i| = 4, using Cauchy's integral formula. (7+7+6)
- **7A.** Solve: $\frac{dx}{dt} + 2y = e^t$; $\frac{dy}{dt} 2x = e^{-t}$.
- **7B.** Find the Laplace transform of triangular wave of period 2a given by

$$f(t) = \begin{cases} t, & 0 < t \le a \\ 2a - t, & a < t < 2a \end{cases}.$$

7C. Obtain the Taylor's series expansion of $f(z) = \frac{1-z}{z^2}$ in powers of (z - 1).

(7 + 7 + 6)

- **8A.** Solve $u_{xx} + 2u_{xy} + u_{yy} = 0$ using the transformation v = x, z = x y.
- **8B.** Rewrite $f(t) = \begin{cases} t, & 0 \le t < 2\\ t^2 + 3, & 2 \le t < 3\\ 2 t, & t \ge 3. \end{cases}$ in terms of unit step function and

hence find its Laplace transform.

8C. Using Cauchy's Residue theorem, evaluate $\oint_C \frac{\sin \pi z^2 + \cos \pi z^2}{(z-1)^2(z-2)} dz$, where *C* is the circle |z| = 3. (7 + 7 + 6)