		Keg.No.									
	INTERNATIONAL CI	ENTRE	FOF	RAP	PLI	ED S	CIE	NCF	S		
-	(M	anipal U	niver	sity)	/_	0	~				
ED BY LIFE	III SEMESTER B.S. DEG	REE EX	KAM	INA	TIO	N – (OCT	./N	OV.	2017	/
	SUBJECT: TH	ERMO-	FLU	JIDS	(MI	ET 2.	31)				
	(BRANC	CH: MEC	HAT	RON	ICS)						
	Frida	ay, 10 No	vemb	er 20	17						
ne: 3	Hours					Μ	[ax.]	Marl	s: 1	00	
✓	Answer ANY FIVE full Question	ns.									
\checkmark	Missing data, if any, may be suit	tably assur	ned								
1A.	Sketch and explain two examples	for open a	nd cl	osed s	systen	n.					
1 B .	Define the following terms.										
	a. Thermodynamic system ar	nd surroun	ding.								
	b. Microscopic and Macrosco	opic viewp	boint								
	d. Homogeneous and heterogeneous system.										
	e. Boundary and isolated syst	tem.									
1C.	Sketch and explain Quasi-static pr	rocess							(5	+10+	5
2A.	Derive a work done equation for I	sothermal	, Isoc	horic,	Isoba	aric ai	nd				
	Polytrophic process.										
2B.	On a hot day in manipal, a tem	perature of	of 97 ⁰	⁰ F is	repor	ted. V	What	is the	e		
	temperature in units of ⁰ C, K and ¹	R?									
2C.	Define zero th law, first law and see	cond law o	of the	rmody	ynami	ics.			(1	0+6+	4
3A.	Define absolute, gauge, vacuum a	nd atmosp	heric	press	ure.						
3B.	A vertical cylinder of cross-section	nal area 0.	$25m^2$	fitted	with	leak j	proof	pistor	n		
	containing 0.3kg of air. Initially, the	he volume	is 0.5	5 m ³ a	nd ter	npera	ture 5	00° C			
	The air is cooled and the piston de	escends up	ntil it	nits 2 m^3 7	stop:	s on t	ne ins		1		
	continued until temperature of air	hecomes '	□ 0.23 20°C	ш. I Calci	illate	Johns	s pro	JUSS 1	5		
	i) Initial Pressure of a	air.	20 C.	Carel	aran						
	ii) Temperature of air	when pist	on hi	ts the	stops						
	Pressure of the air and force of	on the stop	os wh	en ter	npera	ture is	s 20°C	2.			
	Assume that air is an ideal ga	is with a g	as coi	nstant	of 0.	287kJ	/kg K	ζ.			
3C.	With an example sketch and expla	un differe	nt typ	es of	work	transf	ter.		(4	4+8+8	3)
4A.	Derive an equation for Steady F	low Energ	gy Eq	uatio	n (SF	FEE) 1	for ar	n oper	1		
	system.										
4B.	A gas of mass 1.5kg undergoes	a quasi-s	tatic 3	expar	nsion	whick	h foll	lows a	a		
	relationship $P=a+bv$. Where P is in initial and final pressure are 10	1 KPa, V 18 2001/ Pa	in m ³	/kg, a	& b a	ective	nstan	ts. The	e a		
	corresponding volumes are 0.2m	$\frac{3}{4}$ and	10 20 1 2m	$\frac{3}{k}$	The	speci	fic in	iu ille	ะ 1		

Reg.No.

corresponding volumes are 0.2m³/kg and 1.2m³/kg. The specific internal (12+8) energy of the gas is given by the relationship U=1.5pv-85 kJ/kg. Where P is in kPa, v is in m³/kg. Calculate the net heat transfer and the maximum internal energy of the gas during expansion.

- 5A. Explain the Kelvin-Planck and Clausius statement of second law.
- **5B.** What is a Carnot cycle? Explain with a P-V diagram.
- **5C.** A reversible heat engine operates between two reservoirs at temperature of 600^{0} C and 40^{0} C. The engine drives a reversible refrigerator which operates between reservoirs at temperature of 40^{0} C and -20^{0} C. The heat transfer to the heat engine is 2000KJ and the net work output of the combined engine refrigerator plant is 360KJ.
 - a) Evaluate the heat transfer to the refrigerant and net heat transfer to the (4+6+10) reservoir at 40° C.

Reconsider (a) given that the efficiency of the heat engine and the COP of the refrigerator are each 40% of their maximum values.

- **6A.** Prove that Carnot engine is the most efficient engine.
- **6B.** A cyclic heat engine operates between a source temperature of 800° C and a sink temperature of 30° C. What is the least rate of heat rejection per KW net output of engine?
- **6C.** A reversible engine operates between temperature limits of T_1 and T. Where T_1 is the higher temperature. The heat rejected by this engine is received by a second reversible engine at the same temperature T which in turn rejects heat to a sink at temperature T_2 .

(7+5+8)

- a. If the two engines have equal efficiencies, Show that $T=\sqrt{T_1 T_2}$
- b. If the two engines have equal work output, Show that $T = (T_1+T_2)/2$
- 7A. Explain viscosity and variation of viscosity of fluids with temperature.
- **7B.** Briefly explain types of fluids and represent in graph.
- **7C.** Derive Darcy Weisbach's equation to determine the loss of head due to friction in pipes.
- **7D.** One litre of crude oil weighs 9.6N. Calculate its specific weight, density and specific gravity.

(4+4+8+4)

- **8A.** Sketch and explain simple U tube, inverted U-tube and U-tube differential manometers
- **8B.** Derive Euler's equation of motion.
- 8C. A pipe through which water is flowing is having diameter 20cm and 10cm at cross-section 1 and 2 respectively. Velocity of water at section 1 is given 4m/s. Find velocity head at 1 and 2 and also rate of discharge. (10+6+4)

