

INTERNATIONAL CENTRE FOR APPLIED SCIENCES (Manipal University) IV SEMESTER B.S. DEGREE EXAMINATION – OCT. / NOV. 2017

SUBJECT: COMPUTER ARCHITECTURE (CS 242)

(BRANCH: CS and CE)

Reg.No.

Saturday, 11 November 2017

Time: 3 Hours

Max. Marks: 100

- ✓ Answer ANY FIVE full Questions.
- ✓ Missing data, if any, may be suitably assumed.

1A. Explain the following:

- i. Difference between computer architecture and organization
- ii. On board cache
- iii. Branch prediction
- iv. Data flow analysis
- v. Speculative execution
- 1B. Explain the key characteristics of a computer memory system.

(10+10)

- 2A. Write the salient features of RAID levels 2,3,4,5 and 6.
- 2B. i. Draw and explain the Winchester Disk Format (Seagate ST506).
 - ii. With neat diagram explain typical cache organization.

(10+10)

- 3A. i. With necessary diagram explain how a virtual address is mapped to a physical address using paging.
 - ii. Explain associative memory Translation Look-aside Buffer with diagram.
- 3B. Explain the following addressing modes with figures.
 - i. Stack
 - ii. Register
 - iii. Displacement
 - iv. Indirect
 - v. Immediate

(10+10)

- 4A. i. Write the Pentium instruction format and explain the following fields:
 - a) Instruction prefix
 - b) ModR/M
 - ii. Explain different categories of user visible registers of CPU.
- 4B. With neat diagram explain data flow during fetch, indirect, execute and interrupt cycle.

(10+10)

- 5A. i. With neat diagram explain two address field sequencing technique in the case of micro instructions.
 - ii. With neat diagram describe the hardwired implementation of the control unit.
- 5B. Distinguish between hardwired and micro-programmed control unit. Explain the functioning of micro programmed control unit with a neat figure.

6A.	i.	Draw the flow chart for Booths algorithm. Multiply (8) x (-5) usir algorithm.	ng this
	ii.	Explain floating point division with a neat flow chart	
6B.	 Explain 32 bit IEEE floating point format. Represent the following in this format. i. 2.6875 ii1/16 		
7A.	i. ii.	() Briefly explain isolated verses memory mapped I/O. Explain DMA controller with a neat block diagram.	10+10)
7B.	i. ii.	With diagram explain the Daisy-Chain priority interrupt Write short notes on SISD and MIMD architectures.	
			10+10)
8.	 Write short note on: a) Time shared common bus b) Parallel arbitration logic c) Cross bar switch d) Serial arbitration procedure 		
	e) M	Iultiport memory	(20)

##