

Reg.No.

|--|

Max. Marks: 100

 ✓ Answer ANY FIVE full Questions. ✓ Missing data, if any, may be suitably assumed 	
 1A. Explain the following terms: i) Electromagnetic spectrum ii) Line spectrum iii) Wavelength iv) Wave number 1B. Describe the following: i) Modes of vibrations in polyatomic molecules ii) Sampling of solids by KBR pellet technique for IR studies 1C. Give reasons: i) Absorption band for saturated hydrocarbons is observed in the far UV region. ii) HCl molecule is IR active but H₂ and Cl₂molecule are not. 	(8+8+4)
 2A. Derive the mathematical expression for the following. i) Moment of inertia for the rotating rigid diatomic molecule ii) Beer-lambert's Law 2B. Describe the following i) DTA apparatus ii) Flame ionization detector 2C. Write a note sources of UV radiation 	(8+8+4)
 3A. Explain the following i) Bathochromic shift ii) Distribution constant iii) Capacity factor iv) Rf value 3B. Give an account of the following i) Applications of Raman spectroscopy ii) Limitations of Beer's law 3C. Give reasons: i) All mode of vibrations of H₂O molecule are Raman active ii) CH₄ molecule is microwave inactive 	(9 + 9 + 4)
4A. What is Raman shift? Explain the classical theory of Raman effect.4B. Discuss the various factors affecting TGA curve.4C. Give any four important differences between IR and Raman spectroscopy	(8+8+4)

(8+8+4)

- 5A. Discuss the various factors affecting the conductivity of electrolytes.
- 5B. Explain the following:
 - i) Methods of detection of end point in potentiometric titrations.

ii) Limitations of Glass electrode

5C. With a schematic diagram explain the working of double beam UV-Visible spectrophotometer.

(8+8+4)

- 6A. Derive the expression for the frequency of transition for fundamental and overtone bands of anharmonically vibrating diatomic molecule
- 6B. Explain the principle and working of GLC. Mention four applications of GLC
- 6C. Explain the methods of evaluation of chromatogram in TLC.

(8+8+4)

- 7A. With a neat diagram explain the working of HPLC. What is the effect of temperature in HPLC?
- 7B. Derive the expression for the relation between
 - i) Retention time and distribution constant
 - ii) Electrode potential of glass electrode and P^H of a solution.
- 7C. Discuss the characteristics of Raman lines

(8+8+4)

- 8A. Derive the expression for the frequency of transition between the energy levels of a rotating non-rigid diatomic molecule.
- 8B. Draw and explain the simultaneous DTA-TGA diagram of the decomposition of calcium oxalate monohydrate in air and in carbon dioxide atmosphere
- 8C. Discuss the following conductometric titrations:
 - i) Acetic acid Vs. Sodium hydroxide
 - ii) Potassium chloride Vs. Silver nitrate.

(8+8+4)