Reg. No.

MANIPAL INSTITUTE OF TECHNOLOGY

A Constituent Institution of Manipal University

III SEMESTER B. TECH. (AUTOMOBILE ENGINEERING)

END SEMESTER EXAMINATIONS, DECEMBER 2017

SUBJECT: MATERIALS SCIENCE AND METALLURGY (AAE 2153)

REVISED CREDIT SYSTEM

(28/12/2017)

Time: 3 Hours

MAX. MARKS: 50

Instructions to Candidates:

- ✤ Answer ALL the questions.
- Assume missing data suitably by clearly stating the assumption.
- Give sketches/graphs/examples wherever necessary.
- **1A** Write any two applications of (a) SEM (b) TEM in material science.
- **1B** Explain the allotropic behavior of Iron.
- **1C** The results of a x-ray diffraction experiment using x-rays with $\lambda = 0.7107$ Å (a radiation (02) obtained from molybdenum (Mo) target) show that diffracted peaks occur at the following 20 angles: 20.20°, 28.72°, 35.36°, 41.07°. Determine the crystal structure.
- **1D** The d_{220} inter planar spacing in an FCC metal is 0.083393 nm. Determine the lattice **(02)** edge parameter (*a*) and atomic radius of the material.
- **1E** Determine the Miller-Bravais indices for Plane A and Plane B with reference to Figure **(02)** 1.

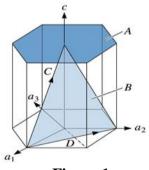


Figure 1

2A	Explain the mechanism by which strength of a material increases with alloying.	(02)
2B	What does Hall –Petch equation tell us?	(02)
2C	What is the significance of Frank-Read source in material science?	(02)
2D 3A	Distinguish between edge dislocation and screw dislocation. What is the significance of Burger's vector? Draw the shape of the equilibrium phase diagram for an isomorphous alloy.	(04) (02)
57	Draw the shape of the equilibrium phase diagram for an isomorphous alloy.	(02)
3B	Explain the changes in (a) hardness (b) ductility of a material during recovery and recrystallization of a material during annealing.	(03)

(02) (02)

3C 3D 4A 4B 4.C 5A	 For a single crystal of BCC material subjected to a tensile stress of 72 MPa, the slip occurs on a (110) plane and in a [111] direction. The angle between the normal to the slip plane and the applied stress direction is 40 ° and the angle between the slip and stress directions is 62.36 °. Apply Schmid's law and find resolved shear stress. State the Hume-Rothery rules for the formation of solid solution. Draw the cooling curve for (a) pure metal (b) an alloy. (a)Explain the eutectic reaction (b) eutectoid reaction (c) peritectic reaction during alloying. (b)Explain lever rule applied to phase diagram with an example of your choice? Explain the information that are revealed by phase diagrams for a materials engineer. What is the Gibb's phase rule that is applicable to metallurgical phase diagrams? Draw time-temperature cooling paths of a 1090 steel on an isothermal transformation diagram that will produce the following micro-structures. Start with steels in austenitic condition at time t=0 and 900°C. (a) 100 % martensite and 50 % coarse pearlite. (c) 100 % fine pearlite. 	(02) (03) (02) (03) (03) (03)
	(e) 100 % upper bainite.(f) 100 % lower bainite.	
5B	What is the advantage of nitriding over carburization?	(02)
5C	Differentiate between annealing and normalizing.	(02)
5D	What is hardness? What is hardenability of steel?	(02)
5E	Distinguish between (a) steel (b) cast iron in terms of carbon percentage.	(01)
