

III SEMESTER B.TECH. (E&C/EE/ICE/BM ENGINEERING) END SEMESTER EXAMINATIONS, NOV. 2017

SUBJECT: ENGINEERING MATHEMATICS-III [MAT 2102]

REVISED CREDIT SYSTEM (18/11/2017)

Time: 3 Hours

MAX. MARKS: 50

Instructions to Candidates:

* Answer ALL the questions.

1A	Find the Fourier series expansion of $f(x)=2x-x^2, 0 < x < 3, f(x+3)=f(x)$ and hence show that $\sum_{n=1}^{\infty} \frac{1}{n^2} = \frac{\pi^2}{6}$.	4		
1B.	Expand $f(x) = \begin{cases} x, & 0 < x < \frac{\pi}{2} \\ \pi - x, & \frac{\pi}{2} < x < \pi \end{cases}$ as a half range Fourier cosine series.	3		
1C.	Find the Fourier transform of $e^{-a x }$, $a > 0$ and hence evaluate $\int_{0}^{\infty} \frac{\cos xt}{a^2 + t^2} dt$	3		
2A.	Find the Fourier cosine and sine transforms of x^{a-1} , $a > 0$.	4		
2B.	Find the analytic function $f(z) = u + iv$ for which $u - v = e^x(\cos y - \sin y)$			
2C.	If $f(z) = u + iv$ is analytic function of z, show that $\left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}\right) f(z) ^p = p^2 f(z) ^{p-2} f'(z) ^2$	3		
3A.	(i) Find all possible expansion of $f(z) = \frac{2z-3}{z(z^2-3z+2)}$ about $z = 1$. (ii) Expand $f(z) = \cos 3z$ about $z = \pi/2$.	4		
3B.	Evaluate $\oint_C \frac{z^2 + 1}{z^2(z^2 + 2z + 2)} dz$ where $C: z - i = \frac{3}{2}$.			
BC.	Verify Green's theorem for $\oint_C (x^2 - 2xy) dx + (x^2y + 3) dy$ Where C is the boundary of the region defined by $y^2 = 8x$ and $x = 2$.	3		

My

Reg. No.		

MANIPAL INSTITUTE OF TECHNOLOGY MANIPAL A Completion of Manual Institute of Manual In

	If $f(r)$ is a differentiable function of $r = \vec{r} $, then show that	4
Α.	$\nabla^2 f(r) = \frac{d^2 f}{dr} + \frac{2}{r} \frac{df}{dr}$ and hence find $f(r)$ such that $\nabla^2 f(r) = 0$.	
4B.	Show that $\vec{F} = (2xz\cos y + y + 2)i + (x - x^2z\sin y + z)j + (x^2\cos y + y + 3)k$ is conservative. Find ϕ such that $\vec{F} = \nabla \phi$. Also, find the work done by \vec{F} in moving a particle in this force field from $(1, 0, 2)$ to $\left(2, \frac{\pi}{2}, 1\right)$.	3
4C.	Find the equations of the tangent plane and normal line to the surface	3
5A.	Verify Stoke's theorem for $A = (x^2 + y^2 + y^2)$ above the xy-plane.	4
5B.	Assuming the most general solution, and the deviation with zero initial velocity and length l , fixed at end points, starts vibration with zero initial velocity and length l , fixed at end points, starts vibration with zero initial velocity and length l , fixed at end points, starts vibration with zero initial velocity and length l , fixed at end points, starts vibration with zero initial velocity and	3
	Derive the one dimensional heat equation using the divergence theorem.	

MAT 2102 Page 2 of 2