Reg. No.

III SEMESTER B.Tech. (BME) DEGREE MAKE-UP EXAMINATIONS DECEMBER 2017

SUBJECT: NETWORK ANALYSIS (BME 2101)

(REVISED CREDIT SYSTEM)

Tuesday, 26th December 2017: 9 AM to 12 NOON

TIME: 3 HOURS

MAX. MARKS: 100

Instructions to Candidates:

1. Answer ALL questions.

2. Draw labeled diagram wherever necessary. Any missing data may be suitably assumed.

1a) In the circuit shown in Fig. Q1a, find the values of current and power dissipated in each (6) of the resistor. Use mesh current analysis.

1b) For the circuit shown in **Fig. Q1b**, i_1 and i_2 are the branch currents. For the elements (8) values given, find the values of i_1 and i_2 .

- 1c) For a series RLC resonant circuit show that, the expression of bandwidth at half power (6) frequency is equal to $\frac{f_0}{Q}$.
- 2a) For the circuit shown in Fig. Q2a, determine the current I in 2Ω resistor using (8) superposition theorem.

2b) For the network shown in **Fig.Q2b**, the impedance Z_L is variable in terms of both resistance and reactance. Find the value of Z_L to get the maximum power in the load. What is the maximum power? (6)

2c) For the circuit shown in **Fig.Q2c**, find the current in 20Ω resistor using Norton's (6) theorem.

3a) State and prove Initial value theorem and Final value theorem. (6)

3b) In the network shown in **Fig.Q3b**, a steady state is reached with the switch K open for t<0. At t=0, the switch K is closed. For the element values given, determine the values of, $V_a(0^-)$ and $V_a(0^+)$

- 3c) Find the Laplace Transform of,(i) Second derivative of a time function. (ii) First integral of a time function.
- **3d**) Find the Inverse Laplace transform of the following.

(i)
$$F_1(s) = \frac{11}{8s^2 + 1.19s + 0.022}$$
 (ii) $F_2(s) = \frac{1}{s^2 + 7s + 12}$

4a) For the circuit shown in **Fig.Q4a**, the switch K is closed at $t=0^+$. For the element values (8) given, find the expression of i(t) for t > 0.

- Fig.Q4a
- 4b) For the waveform shown in the Fig.Q4b, write an equation for V(t) in terms of steps, ramps and related waveforms as needed. Also obtain the expression of its Laplace transform V(s).

(4)

(4)

4c) The waveform shown in **Fig.Q4c**. is a sweep voltage used to deflect the beam in a cathode ray oscilloscope. Show that the transform of this function is

- 5a) Obtain the conversion of Z parameters in terms of Inverse transmission parameters. (6)
- **5b**) For the network shown in **Fig.Q5b**, obtain Y parameters.

5c) For the network shown in Fig. Q5c, find the expressions of,

(6)

(8)

(6)