Reg. No.

III SEMESTER B.TECH. (CHEMICAL ENGINEERING)

MAKEUP EXAMINATIONS, DEC 2017

SUBJECT: CHEMICAL ENGINEERING THERMODYNAMICS-I [CHE 2104]

REVISED CREDIT SYSTEM

Time: 3 Hours

MAX. MARKS: 50

Instructions to Candidates:

- ✤ Answer ALL the questions.
- ✤ Missing data may be suitable assumed.

1A.	Explain briefly the following with examples:(i) stable and unstable equilibrium(ii) closed system and isolated system(iii) reversible and free expansion(iv) heat engine and heat pump	06
1B.	Calculate the volume of ethylene vapour at 8.25 MPa and 25°C using the van der Waals equation of state. Use the iterative procedure. The values of critical temperature and critical pressure are 283.1 K and 51.17 bar respectively.	04
2A.	Derive the expression for first law of thermodynamics for a flow process.	05
2B.	Explain the principle of corresponding states with respect to two parameter and three parameter correlation.	02
2C.	State and prove, Carnot principle first postulate with the help of simplified diagrams.	03
3A.	An ideal gas undergoes the following reversible processes: (a) From an initial state of 343 K and 1 bar it is compressed adiabatically to 423 K (b) It is then cooled to 343 K at constant pressure (c) Finally, it is expanded to its original state isothermally. Calculate ΔU , ΔH , W and Q for each step. Assume $C_v = (3/2)R$	05
3B.	Explain the variation of molar volume of a substance with pressure at different temperature.	05
4A.	Discuss Virial equation of state in terms of both pressure and volume.	01
4B.	With the help of Mnemonic diagrams, explain the rules for getting Maxwell's relations.	04
4C.	Derive the modified expressions for entropy in terms of coefficient of expansion, coefficient of compressibility and heat capacity.	05
5A.	Heat is considered as less versatile form of energy compared to work. Discuss.	02
5B.	List out any four properties of refrigerant.	02
5C.	Discuss with a neat flow diagram, the Regenerative cycle of steam power plant. Also discuss the TS diagram.	06