Reg. No.

MANIPAL INSTITUTE OF TECHNOLOGY

A Constituent Institution of Manipal University

III SEMESTER B.TECH. (CHEMICAL/BIOTECH)

MAKE UP END SEMESTER EXAMINATIONS, DEC 2017

SUBJECT: ENGINEERING MATHEMATICS-III [MAT 2103]

REVISED CREDIT SYSTEM (26/12/2017)

Time: 3 Hours

MAX MARKS: 50

Instructions to Candidates:

- ✤ Answer ALL the questions.
- ✤ Missing data may be suitable assumed.

1A.	Find the Fourier series expansion for the given function $f(x) = x \sin x$ in the interval $(0, 2\pi)$.	4
1 B .	Solve the equation $u_{xx} + 2u_{xy} + u_{yy} = 0$ using the transformation $v = x, z = x - y$.	3
1C.	Find $\nabla \emptyset$, if a) $\emptyset = log \vec{r} $ and b) $\emptyset = \frac{1}{r}$.	3
2A.	Verify Stokes theorem for $\vec{A} = (2x - y)i - yz^2j - y^2zk$ where S is upper half surface of the sphere $x^2 + y^2 + z^2 = 1$ and C is the boundary. Let R be the projection of S on xy-plane.	4
2B.	Obtain the half range cosine series for the function $f(x) = (x - 1)^2$ in $0 < x < 1$.	3
2C.	Show that $u = r^2 \cos 2\theta - r \sin \theta$ is harmonic. Find its harmonic conjugate and also find the corresponding analytic function.	3
3A.	Find the residue of the following functions at their singularities: (i) $\frac{z-sinz}{z^2}$ (ii) $\frac{1}{z-sinz}$	4

MAT 2103

July 1	Reg. No.	
AND ASP	MANIPAL INSTITUTE OF TECHNOLOG MANIPAL A Constituent Institution of Manipal University	. 1
3B.	Find the Fourier transform of $f(x) = \begin{cases} 1 ; x < a \\ 0; x > a \end{cases}$ and show that $\int_0^\infty \frac{\sin t}{t} dt = \frac{\pi}{2}$.	3
3C.	Solve by the method of separation of variables, $y^3 \frac{\partial z}{\partial x} + x^2 \frac{\partial z}{\partial y} = 0$	3
4A.	Derive the one dimensional heat equation by stating the appropriate physical assumptions.	4
4B.	Find the constants 'a' and 'b' such that the surface $ax^2 - byz = (a + 2)x$ will be orthogonal to the surface $4x^2y + z^3 = 4$ at (1,-1, 2).	3
4C.	Evaluate $\oint \frac{z^2+1}{z(2z+1)} dz$ where C is defined at $ z = 1$, and also discuss about the types of singular points.	3
5A.	Find all possible expansion of the following: (i) $f(z) = \frac{1}{z^2 - 3z + 2}$ about $z = 1$ (ii) $f(z) = \frac{1}{z^2}$ at $z = 1$	4
5B.	Find the Fourier transform of $f(x) = e^{-a^2x^2}$, $a > 0$. Hence prove that $e^{\frac{-x^2}{2}}$ is a self-reciprocal function.	3
5C.	Verify the Green's theorem in the plane for $\oint (3x^2 - 8y^2)dx + (4y - 6xy)dy$ where C is a boundary of the region defined by $x = 0, y = 0, x + y = 1$.	3