

III SEMESTER B.TECH. END SEMESTER EXAMINATIONS NOVEMBER 2017

SUBJECT: MECHANICS OF STRUCTURES [CIE 2102]

Date of Exam: 18/11/2017 Time of Exam: 9:00 AM to 12 NOON Max. Marks: 50

Instructions to Candidates:

Answer ALL the questions & missing data may be suitably assumed

1A.	Determine the forces in all the members of the truss shown in Fig.Q1A . Tabulate the magnitude of the forces indicating the nature of forces	5	CO1
1B.	A cantilever beam of symmetrical I-Section has a span of "L". The beam carries a point load of "W" at the free end. The flanges have a width of 125mm with thickness of both flanges and web at 20mm . The overall depth of the section is 300mm . If the maximum bending stress and maximum shear stress are restricted to 100MPa and 50MPa respectively, calculate the values of "L" and "W".	5	CO1
2A.	A solid steel shaft is to transmit a power of 325kW at 120 rpm . If the shear stress is not to exceed 40MPa , find the diameter required. Now the shaft is replaced by a hollow shaft of the same material and length with diameter ratio 3:5 .Calculate the percentage saving in weight, if the shear stress remains unchanged	5	CO2
2B.	Define principal stress and principal plane Find the principal stresses and maximum shear stress with corresponding planes in the material for the following cases (i) A solid shaft 100 mm diameter subjected to a torque of 6kNm (ii) A solid rectangular steel bar of cross section 100mmx 50mm and length 300mm subjected to compressive load of 50kN along its longitudinal axis	5	CO2
3A.	A hollow circular cast iron column 5m long, fixed at both the ends is required to carry an axial load of 600kN . Determine the section of the column using a factor of safety of 4 . The thickness of the wall is to be 1/10 the external diameter. Rankine's constant α = 1/1600 , crushing strength of cast iron σ_c = 570 MPa	5	CO2
3B.	The wheel loads shown in FigQ3B . roll over a simply supported beam of span 20m . Find the maximum bending moment and shear force at a section 7m from the left support. Assume that load can move in either direction. Also calculate the absolute maximum bending moment	5	CO3
4 A.	Determine the vertical displacement at the free end of a cantilever beam of span $3m$ subjected to downward UDL $20kN/m$ on entire span and clockwise moment $20kN-m$ at the free end. $E = 25000MPa$ and $I=2\times10^9 mm^4$. EI is constant. Make use of Castigliano's theorem considering strain energy stored due to bending only	5	CO4
4B.	Using Macaulay's method, determine the vertical displacement at mid-point of simply supported beam of span 8m carrying downward UDL of 25kN/m on left quarter span along with an anticlockwise moment 15kN-m at mid span. Assume uniform EI	5	CO4
5A.	Determine the slope and deflection at mid span for a simply supported beam of span $8m$ carrying a downward point load of $50kN$ at $3m$ from right support. E = $200GPa$ and I= 50×10^6 mm ⁴ . Use moment area method. EI is uniform.	5	CO5

5B.

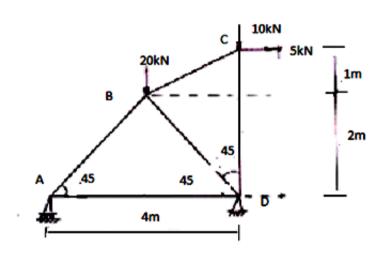
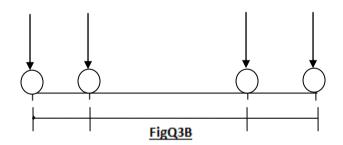



Fig.Q1A

