Reg.			
No.			

III SEMESTER B.TECH (CS/IT/CC) END SEMESTER EXAMINATIONS, NOV 2017 SUBJECT: ENGINEERING MATHEMATICS III [MAT -2105] REVISED CREDIT SYSTEM (23/ 11/2017)

Time: 3 Hours MAX. MARKS: 50

Instructions to Candidates:

Answer ALL questions.

1A.	Let $F(x, x, y) = (x, x, y) \cdot (x, y, y) \cdot (x, y, y)$	
	Let $E(x_1, x_2, x_3) = (x_1 \wedge x_2) \vee (x_1 \wedge x_3) \vee (\overline{x_2} \wedge x_3)$ be a Boolean expression over the two-valued Boolean algebra. Express it in conjunctive normal form and disjunctive normal form.	3
1B.	How many permutations of $1, 2,, n$ are there in which the number k is not in k th position for any k ?	
1C.	 i) If G is a tree, then show that G is connected and the number of vertices of G is equal to one more than the number of edges in G. ii) Show that every self-complementary graph has 4n or 4n+1 vertices for some positive integer n. 	
2A.	Let $\langle A, \vee, \wedge, \overline{\ } \rangle$ be a finite Boolean algebra. Let b be any nonzero element in A and a_1, a_2, \ldots, a_k all the atoms of A such that $a_i \leq b$. Prove that $b = a_1 \vee a_2 \vee \cdots \vee a_k$.	
2B.	Show that $S \vee R$ is tautologically implied by the premises $P \vee Q$, $(P \rightarrow Q)$, $(Q \rightarrow S)$.	
2C.	Let $(G,*)$ be a group, $(H,*)$ a subgroup of G and x an element of G . Show that $x*H*x^{-1} = \{x*h*x^{-1} h \in H\}$ is a normal subgroup of G if and only if $x*H*x^{-1} = H$.	
3A.	Show that every cyclic group is Abelian and check whether a group on 83 elements is Abelian. Justify your answer.	
3В.	Show that from $(\exists x) (F(x) \land S(x)) \rightarrow (y)(M(y) \rightarrow W(y))$ and $(\exists y) (M(y) \land \neg W(y))$ the conclusion $(x) (F(x) \rightarrow \neg S(x))$ follows.	3

3C.	 (i) Show that in a distributive lattice, if an element has a complement, then the complement is unique. (ii) Let (A,≤) be a distributive lattice. Show that if a ∧ x = a ∧ y and a ∨ x = a ∨ y for some element a of A, then x = y. 	4			
4A.	Let p_n be the number of unrestricted partitions of n , and let p_n^* be the number of partitions of n without unit parts. Show that for $n > 1$, $p_n^* = p_n - p_{n-1}$. Generalise this result to find a formula for the number of partitions of n without parts of size k .				
4B.	Show that a non-empty subset H of a group G is a subgroup of G if and only if for all $a,b\in H$, $ab^{-1}\in H$.	3			
4C.	Let $R(r,k)$ denote the number of partitions of the integer r into k parts. (i) Show that $R(r,k) = R(r-1,k-1) + R(r-k,k)$. (ii) Show that $\sum_{k=1}^{r} R(n-r,k) = R(n,r)$.	4			
5A.	 (i) Given n=5 and the five marks 1,2,3,4,5, what are the 50th and 75th permutations in the (a) Lexicographical ordering (b) Fike's ordering. (ii) Show that a ∨ (a ∧ b) = a for every a, b in the lattice (L,≤). 	3			
5B.	Show that in any party with six people there are either three people who mutually know each other or three people who mutually do not know each other.	3			
5C.	Write the distance matrix for the following network. Using Dijkstra's algorithm, find shortest paths from c to all the other vertices in the network given below.	4			

(16 11/11)