Reg. No.						
The same of the sa	ALTERNATION AND ADDRESS.	A 38 34 3	diam's law and	NAME OF THE OWNER.	AND DESCRIPTION OF THE PERSON NAMED IN	1

III SEMESTER B.TECH. (COMPUTER AND COMMUNICATION ENGINEERING) END SEMESTER EXAMINATIONS, NOVEMBER 2017

SUBJECT: DIGITAL SYSTEM DESIGN [ICT 2151]

REVISED CREDIT SYSTEM (18/11/2017)

Time: 3 Hours MAX. MARKS: 50

Instructions to Candidates:

- Answer ALL the questions.
- Missing data, if any, may be suitably assumed.
- Design a synchronous sequential circuit with one input X and one output Y. The output Y is to be HIGH whenever the sequence "0100101" is detected. Otherwise the output is LOW. Overlapping of the sequence is allowed. Implement using D flip flops and external gates. Design a 2-bit subtractor using 74153 ICs and external gates. 3 1B. With a neat diagram, explain the operation of a direct mapped cache memory. 2 1C. Design a code converter to convert a decimal digit represented in Excess-3 to 5 2A. decimal digit represented in 8 4 -2 -1 code, using 74138 ICs and external NAND gates. Divide $23_{(10)}$ by $5_{(10)}$ using non restoring division algorithm. 3 2B. Design a 3-bit bi-directional shift register using D flip flops, 2:1 MUXs and 2 2C. external gates. Design a 3-bit synchronous gray code UP/DOWN counter using JK flip flops and 3A. external gates. 5 Design a single digit decimal adder using 7483 ICs and external NAND gates. 3 3B. Design 8-bit binary UP counter to count from N₁ to N₂ using 74193 ICs, 7485 ICs 2 3C. and external gates. Assume $N_1 < N_2$.
- 4A. What is microprogramming? Design a microprogrammed control unit for 4x4 5 Booth's multiplier.

4B.	Design a mod 9 asynchronous down counter using T flip flops. Using the same, generate the sequence 110010010. Use external gates if required.	3
4C.	Why is Carry Look Ahead adder faster than Carry Propagation adder?	2
5A.	Design 4-bit × 4-bit binary multiplier using 7483 ICs and minimum number of	5
5B.	external NAND gates. Design a carry save adder to add four 3-bit binary numbers.	3
5C.	Design a mod 6 Johnson counter using D flip flops. Show that the output of the counter can be decoded using 2- input AND gates.	2

Page 2 of 2