Reg. No.

MANIPAL INSTITUTE OF TECHNOLOGY

(A constituent Institution of MAHE, Manipal)

III SEMESTER B.TECH (ELECTRICAL & ELECTRONICS ENGINEERING) MAKE UP EXAMINATIONS, JANUARY 2018

SUBJECT: ANALOG ELECTRONIC CIRCUITS [ELE 2105]

REVISED CREDIT SYSTEM

Time	: 3 Hours	Date: 02 January 2018	Max. Marks: 50
Instructions to Candidates:			
	✤ Answer ALL the questions.		
	 Missing data may be suitab 	ly assumed.	
1A 1B	For the circuit shown in characteristic if Vi=25sinωt.	fig Q1a, assuming ideal diodes, draw the Q1b assuming constant voltage ($V_V = 0.7V$	ne transfer (4)) model for
1D 1C	diode, draw the output way during positive and negative With a neat circuit diagram d	veform. Clearly show the calculation of out half of input. iscuss the working of Zener Voltage Regulato	put voltage (3) pr. (3)
2A	What are the different reg	ions of operation of MOSFET? Discuss wi	th relevant (3)
2B	Draw the MOSFET based RC of circuit elements in definit frequency response of this Ar	coupled amplifier circuit diagram. Clearly st ng <i>ac</i> and <i>dc</i> operation of the circuit. Also mplifier,	ate the role discuss the (5)
2C	Define MOSFET pinch off.		(2)
3A	For the amplifier shown in F $R_1=119k\Omega$, $R_2=281k\Omega$, $I_{DQ}=1$ model	ig Q3a, V_{TH} = 0.8 V, µnCoxW/L=1mA/V ² , λ = 0 .5mA, Rsig=200Ω Determine Vo/Vin. Draw s	, V _{DD} = 10V, small signal (4)
3B	In the amplifier shown in fig $50\text{mA}/\text{V}^2$, <i>Vth</i> = 2V, λ = 0.	Q3b, both the transistors are identical with	$\mu_n c_{ox} W/L =$
	i) Determine <i>I_D</i> , gm f ii) Draw the small sig iii) Find <i>vo/vs</i> .	nal model	
3C	iv) Find input resistar State and prove Miller's theor	nce (Rin) and output resistance (Rout) rem.	(4) (2)
4A	For the circuit shown in fig $(\mu cox W/L)p = 60 \ \mu A/V^2$ and λ V. Assuming M1 and M2 are r	Q4a, Vthn = $ Vthp $ = 0.5 V, $(\mu coxW/L)n$ = 1 In = $\lambda p=0$. The quiescent values are V_0 = 1.5 V matched	100
	i) Determine the circleii) Determine the small	cuit W/L ratios, such that $I_{REF} = I_0 = 100 \mu A$ all-signal voltage gain.	(4)
4B	Prove that cascading of sin resultant amplifier.	milar amplifier stages reduces overall ba	ndwidth of (3)
4L	Derive an expression for outp	but resistance of a common Drain MUSFE1 co	ninguration. (3)

- 5A For the series fed class A power amplifier, supply voltage V_{DD} = 10V, bias point V_{DS} = 4V, load resistance R_L = 10 Ω . Determine
 - (i) the bias current *I*_{DS}
 - (ii) the maximum peak to peak amplitude of a symmetrical output voltage if the minimum value of instantaneous drain to source voltage is equal to 0.5V
 - (iii) power conversion efficiency
 - (iv) transistor specifications.
- 5B For the MOSFET based class B complementary push pull power amplifier, evaluate the maximum efficiency. (3)
- 5C Derive an expression for CMRR of a Differential Amplifier

(4)

(3)