Reg. No.

III SEMESTER B.TECH (ELECTRICAL & ELECTRONICS ENGINEERING)

END SEMESTER EXAMINATIONS, NOVEMBER 2017

SUBJECT: ELECTRICAL CIRCUIT ANALYSIS [ELE 2101]

REVISED CREDIT SYSTEM

Time:	3 Hours	Date:	16 November 2017	Max. Mar	ks: 50
Instructions to Candidates:					
	✤ Answer ALL the questions.				
	 Missing data may be suitab 	ly assum	ned.		
1A.	For the circuit shown in Fig Q1 resistance of 1 Ω .	A, use Sı.	uperposition theorem to find the current the	ough load	(03)
1B.	For the circuit shown in Fig Q1 Also, find the maximum power	LB, find t transfer	he value of R_L so that maximum power is trred.	ansferred.	(03)
1C.	For the circuit shown in Fig terminals AB.	g Q1C, o	btain the Thevenin`s equivalent circuit a	across the	(04)
2A.	Find the Laplace transform of functions) shown in Fig Q2A.	the per	riodic waveform v(t)(containing ramp and	sinusoidal	(02)
2B.	Find the initial and final value Theorem, if applicable. If not a	s of the pplicable	following function using Initial Value and F e, mention the reason for the same.	inal Value	
	i(t	t) = 5u(t)	$(t) - 3e^{-2t} + e^{-t}(\sin t + \cos t)$		(02)
2C.	Three impendances $(8+j6) \Omega$, (50 Hz single phase AC supply. infinity and hence determine resonance and (iv) value of 'R'	(2-j2) Ω a Draw the (i) mini at reson	and (R+j5) Ω are connected in parallel across e current locus if the resistance 'R' varies fro imum current (ii) maximum current (iii) ance.	ss a 100 V, om zero to current at	(06)
3A.	The waveform for the first der	ivative o	f the function f(t) is shown in Fig Q3A.		
	(i) Obtain the equation fo(ii) Sketch the step response	r f(t) and use of f(t)	l sketch it.) obtained.		(03)
3B.	In the circuit shown in Fig Q3E to switching, circuit had attain domain analysis.	3, switch ned stea	is moved from position 'A' to position 'B' at dy state. Determine $v_c(t)$ and $i(t)$ for t >0 t	t=0. Prior using time	(03)
3C.	For the circuit shown in Fig domain analysis.	Q3C, fin	d $i_2(t)$ after the switch is closed at t=0, ι	ising time	(04)
4A.	In the network shown in Fig (steady state existing in posit Transformation method.	Q4A, the ion 'A' b	e switch 'K' is moved from position 'A' to efore t = 0). Solve for the current i(t), usin	'B' at t =0 ng Laplace	(03)
4B.	For the circuit shown in Fig O4	B, find v	(t) for $e(t) = 2e^{-3t}u(t)$ using Convolution i	ntegral.	(03)
46	Determine the T parameters fo	or the ove	erall network shown in Fig $\Omega 4C$	0	(14)
10.	Determine the r parameters it				(07)

_

- **5A.** In the network shown in Fig Q5A, switch 'K' is opened at t=0 after the network has attained a steady state with the switch closed. (a) Find an expression for the voltage across the switch at t = 0⁺. (b) If the parameters are adjusted such that $i(0^+)=1$ and $\frac{di(0^+)}{dt} = -1$, what is the value of the first derivative of the voltage across the switch? (02)
- **5B.** For the function below, find the residues by pole-zero plot and hence find i(t).

$$I(s) = \frac{5(s+1)(s+2)}{s(s^2+4)}$$
(03)

5C. Find the Y parameters for the resistive network shown in Fig Q5C. Hence, derive h parameters from the obtained Y parameters. **(05)**

Fig 4B

Fig Q5A

Fig Q4A

Fig Q5C