Reg. No.

III SEMESTER B.TECH (ELECTRICAL & ELECTRONICS ENGINEERING) MAKE UP EXAMINATIONS, DECEMBER 2017

SUBJECT: ELECTROMAGNETIC THEORY [ELE 2104]

REVISED CREDIT SYSTEM

Time	e: 3 Hours	Date: 30 th December 2017	Max. Marks: 50
Instructions to Candidates:			
	✤ Answer ALL the questions.		
	Missing data may be suita	ably assumed.	
1A.	State Coulomb's law of elect	crostatic force of attraction/repulsion.	

Three equal positive charges of 4×10^{-9} *C* each are located at the three corners of a square of side 20 *cm*. With the help of a neat sketch, determine the magnitude and direction of the electric field at the vacant corner point of the square. (04)

1B. With neat diagrams, derive the expression for the electric field intensity at a point situated above a uniformly charged conductor having a charge density of ' λ ' C/m.

A straight conductor of length 12 cm carries a uniformly distributed charge of $0.3 \times 10^{-6} C/cm$. Determine the magnitude and direction of the field intensity at a point located 3 cm above the conductor and displaced 3 cm to the right and beyond one end. **(03)**

- **1C.** A thin circular ring of radius 'a' has a total charge ' + Q' distributed uniformly over it.
 - a) Derive the expression of the electric field intensity at point P which is 'x ' meters from the centre on the axis of the ring
 - b) Determine the force on a charge 'q ' at the point P which is 'x ' meters from the centre on the axis of the ring
 - c) Determine the force on the charge 'q ' placed at the centre of the ring

2A. A circular disc of radius 'a' is uniformly charged with $\rho_s C/m^2$. If the disc lies on the

z = 0 plane with its axis along the z - axis, prove that at point (0,0, h):

$$E = \frac{\rho_s}{2\varepsilon_0} \left\{ 1 - \frac{h}{(h^2 + a^2)^{1/2}} \right\} a_z V/m$$
(04)

2B. Let $D = 6xyz^2a_x + 3x^2z^2a_y + 6x^2yza_z C/m^2$. Through suitable evaluation of the divergence theorem, determine the total charge enclosed by a region which is bound by $1 \le x \le 3$; $0 \le y \le 1$; $-1 \le z \le 1$.

(03)

- **2C.** The plane z = 0 separates air $(z \ge 0, \mu = \mu_0)$ from iron $(z \le 0, \mu = 200\mu_0)$. Given that: $\overline{H} = 10a_x + 15a_y - 3a_z A/m$, in air:
 - a) Determine the magnetic flux density in iron.
 - b) Calculate the angle between the field vector and the interface in iron.
- **3A.** In a certain region of space, $\overline{B} = 0.1xa_x + 0.2ya_y 0.3za_z T$. Determine the total force on a rectangular loop as shown in **Fig. Q. 3A**, if it lies in the z = 0 plane and is bound by x = 1; x = 3; y = 2 and y = 5 cm. (04)
- **3B.** A toroidal core has an average radius of 10 cm with a cross sectional radius of 1 cm. If the core was made of steel ($\mu_R = 1000$) and the coil wound on it has 200 turns, calculate the amount of current that should flow so as to produce a magnetic flux of 0.5mWb in the core.
- **3C.** A solenoid of length '*l*' and radius '*a*' consists of '*N*' turns of wire through which current '*I*' flows. With a neat diagram and suitable explanation, prove that at point '*P*' along its axis, $H = \frac{[nI(\cos\theta_2 \cos\theta_1)]}{2}a_z$

Where: n = N/l, θ_1 and θ_2 are the angles subtended at P by the end turns. (03)

- 4A. With neat diagram, derive and explain the expressions for the induced electro motive force where the magnetic flux through a circuit changes with time and the circuit is in motion as well. (04)
- **4B.** With appropriate explanations, derive Poynting theorem and show that total power leaving a volume is equal to rate of decrease in energy stored in electric and magnetic fields minus the ohmic power dissipated
- **4C.** Let $\overline{E} = (1000a_x + 400a_z)e^{-j10y} V/m$ for a 250 *MHz* uniform plane wave propagating in a perfect dielectric. If the maximum amplitude of the magnetic field intensity is 3 *A/m*, determine the following:
 - a) Relative permittivity of the dielectric
 - b) Relative permeability of the dielectric
 - c) $\overline{E}(x, y, z, t)$
- **5A.** A lossy dielectric is characterized by $\varepsilon_R = 2.5$, $\mu_R = 4$ and $\sigma = 10^{-3}S/m$ at 10 *MHz*. For a uniform plane wave propagating along the positive z-axis in the dielectric (having propagation constant = γ) at the said frequency, let $\overline{E} = 20e^{-\gamma z}a_x V/m$ at z = 0. Determine:
 - a) Attenuation constant b) Phase constant c) Wave velocity
 - d) wavelength e) Intrinsic impedance f) $\overline{E}(2,3,4,t=10ns)$ (04)
- **5B.** Consider a uniform plane wave propagating along the positive z-axis as shown in **Fig. Q 5B.** Let region 1 (z < 0) have a conductivity, permeability as well as permittivity of σ_1, μ_1 and ε_1 respectively while region 2 (z > 0) has its conductivity, permeability as well as permittivity as σ_2, μ_2 and ε_2 respectively. For a normal incidence at the interface

$$(z = 0)$$
, prove with appropriate explanations that: $E_{ro}/E_{io} = \Gamma = \frac{[\eta_2 - \eta_1]}{[\eta_2 + \eta_1]}$ (03)

(03)

(03)

(03)

(03)

- **5C.** A uniform plane wave $\overline{E} = 50 \sin(\omega t 5x)a_y V/m$ in a lossless medium $(\mu = 4\mu_0, \varepsilon = \varepsilon_0)$ encounters a lossy medium $(\mu = \mu_0, \varepsilon = 4\varepsilon_0, \sigma = 0.1S/m)$ normal to the x-axis. Determine:
 - a) The reflection and transmission coefficients
 - b) The reflected wave $(E_r \text{ and } H_r)$

(03)