Reg. No.

III SEMESTER B.TECH (ELECTRICAL & ELECTRONICS ENGINEERING)

END SEMESTER EXAMINATIONS, NOVEMBER 2017

SUBJECT: ELECTROMAGNETIC THEORY [ELE 2104]

REVISED CREDIT SYSTEM

Time:	Date: 25 th November 2017	Max. Marks: 50
Instructions to Candidates:		
	Answer ALL the questions.	
	 Missing data may be suitably assumed. 	
1A.	 State Coulomb's law of electrostatic force of attraction/repulsion. A 5nC point charge is located at A(2, −1, −3) in free space in Cartesian coal a) Determine the electric field intensity at the origin. 	ordinate system.
	b) Plot $ E(x, 0, 0) $ versus 'x' for; $-10 \le x \le 10m$	
	c) Determine the maximum value of $ E(x, 0, 0) $	(04)
1B.	Two parallel 10 $cm \times 10 cm$ conducting plates are separated by a distance region between the plates is filled with a perfect dielectric where $\varepsilon_R = (1 + x')^2 x'$ is the distance from one plate. Assuming a uniform surface charge demonstrates the positive plate, determine the following:	the factor of 2 mm. The $(+500x)^2$, where the sity of $10nC/m^2$
	 a) Total charge Q_{total} b) The potential developed between the plates V₀ c) The total capacitance 	(03)
1C.	 A thin circular ring of radius 'a ' has a total charge ' + Q ' distributed unif a) Derive the expression of the electric field intensity at point P whe from the centre on the axis of the ring b) Determine the force on a charge 'q ' at the point P which is 'x ' centre on the axis of the ring c) Determine the force on the charge 'q ' placed at the centre of the ring 	formly over it. ich is 'x ' meters meters from the ring (03)
2A.	Let $D = 6xyz^2a_x + 3x^2z^2a_y + 6x^2yza_z C/m^2$. Find the total charge ly region bounded by $x = 1$ and 3; $y = 0$ and 1; $z = -1$ and 1 by separately side of the divergence theorem.	ying within the v evaluating each (04)
2B.	With neat diagram and appropriate explanation, prove that, for a uniform having radius ' a ' meters and charge density ' $\sigma C/m^2$ ', the potential at an ' h ' meters above its center on its axis is:	nly charged disc ny point situated
	$V = \frac{\sigma}{2\varepsilon_0} \left[\sqrt{(h^2 + a^2)} - h \right] volts$	(03)

ELE 2104

- **2C.** The plane z = 0 separates air $(z \ge 0, \mu = \mu_0)$ from iron $(z \le 0, \mu = 200\mu_0)$. Given that: $\overline{H} = 10a_x + 15a_y - 3a_z A/m$, in air:
 - a) Determine the magnetic flux density in iron.
 - b) Calculate the angle between the field vector and the interface in iron. (03)
- **3A.** Given $\overline{H} = y^2 z a_x + 2(x+1)yz a_y (x+1)z^2 a_z A/m$ in free space:
 - a) Determine $\oint H. dL$ around a square path defined **Fig. Q 3A** and further calculate its value for b = 0.1
 - b) Determine the curl of the magnetic field intensity and calculate its x- component value at D(0,2,0)

c) Prove that at point D,
$$(\nabla \times H)_x = \frac{[\oint H. dL]}{\Delta S}$$
 (04)

3B. A solenoid of length '*l*' and radius '*a*' consists of '*N*' turns of wire through which current '*I*' flows. With a neat diagram and suitable explanation, prove that at point '*P*' along its axis, $H = \frac{[nI(\cos\theta_2 - \cos\theta_1)]}{2} a_z$

Where: n = N/l, θ_1 and θ_2 are the angles subtended at P by the end turns. (03)

- **3C.** The core of a toroid has a cross sectional area of $12 \text{ } cm^2$ and is made of a material having relative permeability of 200. If the mean radius of the toroid is 50 *cm*, calculate the number of turns needed to obtain an inductance of 2.5 *H*. (03)
- **4A.** A perfectly conducting filament containing a 500 Ω resistor is formed into a square as shown in **Fig. Q 4A**. determine the flowing current I(t) in the loop if:

a)
$$\overline{B} = 0.2 \cos 120\pi t \ a_z$$

- b) $\bar{B} = 2 \cos[3\pi \times 10^8 (t x/c)] a_z \,\mu T$ where $c = 3 \times 10^8 m/s$ (04)
- 4B. With appropriate explanations, derive Poynting theorem and show that total power leaving a volume is equal to rate of decrease in energy stored in electric and magnetic fields minus the ohmic power dissipated (03)
- **4C.** Let $\overline{E} = (1000a_x + 400a_z)e^{-j10y} V/m$ for a 250 *MHz* uniform plane wave propagating in a perfect dielectric. If the maximum amplitude of the magnetic field intensity is 3 *A/m*, determine the following:
 - a) Relative permittivity of the dielectric
 - b) Relative permeability of the dielectric
 - c) $\overline{E}(x, y, z, t)$

5A. A lossy dielectric is characterized by $\varepsilon_R = 2.5$, $\mu_R = 4$ and $\sigma = 10^{-3}S/m$ at 10 *MHz*. For a uniform plane wave propagating along the positive z-axis in the dielectric (having propagation constant = γ) at the said frequency, let $\overline{E} = 20e^{-\gamma z}a_x V/m$ at z = 0. Determine:

a) Attenuation constant b) Phase constant c) Wave velocity d) wavelength e) Intrinsic impedance f) $\overline{E}(2,3,4,t = 10ns)$ (04)

(03)

5B. For a uniform plane wave propagating along the positive z-axis as shown in **Fig. Q 5B**, assuming both the mediums to be perfect dielectrics, for a normal incidence, prove with appropriate explanations that:

a)
$${}^{E_{ro}}/{}_{E_{io}} = \Gamma = \frac{\left[\sqrt{\varepsilon_1} - \sqrt{\varepsilon_2}\right]}{\left[\sqrt{\varepsilon_1} + \sqrt{\varepsilon_2}\right]}$$

b) ${}^{H_{to}}/{}_{H_{io}} = \tau = \frac{\left[2\sqrt{\varepsilon_2}\right]}{\left[\sqrt{\varepsilon_1} + \sqrt{\varepsilon_2}\right]}$
(03)

- **5C.** A uniform plane wave $\overline{E} = 50 \sin(\omega t 5x)a_y V/m$ in a lossless medium ($\mu = 4\mu_0$, $\varepsilon = \varepsilon_0$) encounters a lossy medium ($\mu = \mu_0$, $\varepsilon = 4\varepsilon_0$, $\sigma = 0.1S/m$) normal to the x-axis. Determine:
 - a) The reflection and transmission coefficients

b) The reflected wave $(E_r \text{ and } H_r)$

(03)