

THIRD SEMESTER B.Tech. (E & C) DEGREE END SEMESTER EXAMINATION NOV/DEC 2017

SUBJECT: ANALOG ELECTRONIC CIRCUITS (ECE – 2101)

TIME: 3 HOURS	MAX. MARKS: 50
Instructions to candidates	
• Answer ALL questions.	
• Missing data may be suitably assumed.	

- 1A. Design the CE stage of Fig. Q1(A) for a power budget of 1mW and a voltage gain of 20. Assume β =100, V_A= ∞ and I_S=5x10⁻¹⁷A
- 1B. If a BJT in CE configuration is biased at a collector current of 1mA. Determine all small signal parameters. Assume β =100, V_A=20V and I_S=5x10⁻¹⁷A
- 1C. Compute the value of W/L for M1 in Fig.Q1(C). for a bias current of 1mA. Assume $\lambda = 0$ and $R_s = 200\Omega$.

(5+3+2)

Fig.Q1(A)

Fig Q1(C)

2A. The circuit of Fig. 2(A) must be designed for a voltage drop of 200mV across R_S. Assume $\mu_n C_{ox} = 100 \mu A/V^2$, $V_{th}=0.4V$ and $\lambda=0$.

(a) Calculate the minimum allowable value of W/L if M_1 must remain in saturation.

(b) What are the required values of R_1 and R_2 if the input impedance must be at least $30k\Omega$?

- 2B. For the circuit shown in Fig. 2(B), determine I/O impedance and voltage gain. Assume I_D=2mA, $\mu_n C_{ox}$ =100 μ A/V² V_{th}=0.4V, λ =0, W/L=20, R_D=500 Ω and R_G=20k Ω .
- 2C. Draw the small signal equivalent circuit for the circuit shown in Fig. Q2(C).

(5+3+2)

- 3A The circuit of Fig. Q3(A) is designed with W/L = 20/0.18, $\lambda = 0$, and I_D = 0.25 mA. (a) Compute the required gate bias voltage. (b) With such a gate voltage, how much can W/L be increased while M₁ remains in saturation? What is the maximum voltage gain that can be achieved as W/L increases. Assume $\mu_n C_{ox} = 100\mu A/V^2$, V_{th}=0.4V.
- 3B. Explain the working of MOSFET as a voltage-dependent resistor. Also draw the I_D - V_D characteristics for various V_G .
- 3C. List the salient features of emitter follower.

(5+3+2)

$$V_{DD} = 1.8 V$$

$$R_{D} \ge 2 k\Omega$$

$$V_{in} \circ - I_{a} M_{1}$$
Fig.Q3(A)

- 4A. For the network of Fig. Q4(A),
 - (i) Obtain an expression for the transfer function of each stage.
 - (ii) Write the expression for the overall transfer function.
 - (iii) Obtain an expression for the oscillation frequency
 - (iv) To ensure oscillation start-up, obtain the condition on low-frequency gain of each stage
 - (v) If $R_D = 2k\Omega$, and $C_D = 0.1\mu F$, at what frequency the circuit will oscillate?
- 4B. In the amplifier of Fig. Q4(B), $g_m = (150\Omega)^{-1}$, $\lambda = 0$, $R_D = 2k\Omega$, $R_S = 200\Omega$, $C_{in} = 1\mu F$, and $C_L = 43nF$. Neglecting all other capacitors, plot the frequency response and calculate the cutoff frequency.
- 4C. In the amplifier of Fig. Q4(C), with $\lambda > 0$, with all other capacitances neglected, derive the transfer function. If $\lambda = 0$, what mathematical operation can be performed using this circuit?

(5+3+2)

- 5A. For the Push-Pull amplifier of Fig. Q5(A1) which has its V_{out} versus V_{in} plot as in Fig. Q5(A2),
 - (i) Sketch the small-signal gain as a function of V_{in} .
 - (ii) What is the region where the gain is zero is commonly known as?

(iii) Suppose we apply a sinusoid with a peak amplitude of 4V to Fig. Q5(A1), sketch the output waveform. Assume $V_{BE} = 0.6V$.

- (iv) The distortion in the output waveform due to zero gain is commonly known as?
- (v) How do we avoid, distortion in the output due to zero gain?
- 5B. For the CB stage shown in Fig. Q5(B), using Miller's theorem, estimate the overall voltage gain. Assume r₀ is large enough to allow the approximation $v_{out}/v_X = g_m R_C$
- 5C. Calculate the closed-loop gain of the circuit in Fig. Q5(C). Assume the Opamp to be ideal with no input current and $\lambda = 0$ for the MOSFET.

$$(5+3+2)$$

